az United States Patent

US012242923B2

a0y Patent No.: US 12,242,923 B2

Edgar (45) Date of Patent: Mar. 4, 2025
(54) SYSTEM, METHOD, AND COMPUTER (56) References Cited
PROGRAM PRODUCT FOR REDUCTION,
OPTIMIZATION, SECURITY, AND U.S. PATENT DOCUMENTS
ACCELERATION OF COMPUTER DATA 9,264,225 B1* 2/2016 Hunt HO4L 9/0852
g‘l}ﬁgﬁ%(l)stllng}Jg;NG NEURAL 9412051 BI* 82016 Chelian GO6N 3/049
(Continued)
(71) Applicant: David Allan Edgar, Brentwood, MD
Us) OTHER PUBLICATIONS
(72) Inventor: David Allan Edgar, Brentwood, MD Nicolas Riche (“VISION: Video and Image Saliency Detection”,
(us) PhD Dissertation, University of Mons, 2015, pp. 1-257) (Year:
2015).*
*) Notice: Subject to any disclaimer, the term of this .
) pateJnt is ethnded or adjusted under 35 (Continued)
US.C. 154(b) by 166 days. Primary Examiner — Vincent Gonzales
(21) Appl. No.: 16/577,294 Assistant Examiner — Chase P. Hinckley
(22) Filed: Sep. 20, 2019 7 ABSTRACT
Systems and methods are described herein which may be
(65) Prior Publication Data implemented using computer programs comprising instruc-
US 2020/0097832 Al Mar. 26, 2020 tions that replicate the neural synchronization algorithm of
Related U.S. Avplication Dat the human brain. These implementations result in reduction,
¢lated L.>. Application Lata optimization, security and acceleration of data records/
(60) Provisional application No. 62/734,443, filed on Sep. frames and processing in a computer system or network. An
21, 2018. embodiment of the invention comprises motion decimation,
motions reactor, motion replicator and motion aggregator
(51) Int. CI. modules for replicating higher intelligence functions, and a
GO6N 10/00 (2022.01) management module for configuring resources and moni-
GO6N 3/004 (2023.01) toring system operation. Systems and methods as described
GO6N 3/10 (2006.01) herein may operate on wired or wireless computer networks.
(52) US. CL Data are translated from original format into thalamic
CPC ..o GO6N 10/00 (2019.01); GO6N 3/004 motion and further encoded with motion signal protocol,
(2013.01); GO6N 3/10 (2013.01); GO5B then reproduced and aggregated using thalamic motion for
2219/39292 (2013.01); GO5B 2219/39385 integration with higher forms of intelligence. By duplicating
(2013.01) the human brain’s neural synchronization process, overall
(58) Field of Classification Search process and communication efficiency may be dramatically
CPC GO6N 10/00; GO6N 3/10; GO6N 3/004; increased.
GO5B 2219/39292; GOSB 2219/39385
See application file for complete search history. 16 Claims, 8 Drawing Sheets
Baurat
Syachronization
Systerm 50

i Motian

b i LS 1

{ Management ""3% s

-] \ Comnsyaion Seves B
KA . . . Dits
’~§;¢ Conthgoratiog Sredictim Fatogs

o] “ les

ot
Regitator

Lason Chvat 83

&8

b riridn Decimto?

&Y

US 12,242,923 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

10,176,382 B1*
10,318,742 B1*
10,715,319 B2 *
11,251,952 B2 *
2008/0208783 Al*

1/2019 Owechko GO6K 9/627
6/2019 Sankruthi ... GO6F 21/577
7/2020 Pitalaa HO4L 1/0618
2/2022 Lamas-Linares HO04L 9/12
8/2008 Jaroscoceen. GO6N 3/049

706/21

2009/0106007 A1* 4/2009 Massaquoi GO6N 3/04
703/11

2015/0332163 Al1* 11/2015 Schroff G21K 1/003
250/505.1

2018/0014041 Al1* 1/2018 Chen ... HO4L 65/612
2018/0349764 Al* 12/2018 . GO6N 3/063
2019/0277957 Al1* 9/2019 GO01S5/017
2019/0295305 Al* 9/2019 Yang ... GO6N 3/044
2019/0359661 Al* 11/2019 A61K 47/6425
2021/0272003 Al1* 9/2021 1o, GO6N 10/40

OTHER PUBLICATIONS

Yan et al. (“Video Encryption and Decryption on Quantum Com-
puters”, Int J Theor Phys, 54, 2015, pp. 2893-2904) (Year: 2015).*
Yan et al. (“Quantum image processing: A review of advances in its
security technologies”, International Journal of Quantum Informa-
tion, vol. 15, No. 3, 2017, pp. 1-18) (Year: 2017).*

Tian et al. (“Authentication and copyright protection watermarking
scheme for Hwo64 based on visual saliency and secret sharing”,
Multimed Tools Appl., 74, 2015, pp. 2991-3011) (Year: 2015).*
Konar et al. (“A quantum bi-directional self-organizing neural
network (QBDSONN) architecture for binary object extraction from
a noisy perspective”, Applied Soft Computing 46, 2016, pp. 731-
752) (Year: 2016).*

12. Aytekin et al. (“Visual saliency by extended quantum cuts.”
2015 IEEE international conference on image processing (ICIP).
IEEE, 2015, pp. 1692-1696) (Year: 2016).*

Rikhye et al., “Toward an Integrative Theory of Thalamic Function”
Apr. 4, 2018, pp. 163-183. (Year: 2018).*

Whitmire et al., “Information Coding through Adaptive Gating of
Synchronized Thalamic Bursting” Feb. 2, 2016, pp. 795-807. (Year:
2016).*

Calefli et al., “Quantum Internet: from Communication to Distrib-
uted Computing!” May 11, 2018, arXiv: 1805.04360v1, pp. 1-4.
(Year: 2018).*

Dehghani et Wimmer, “A computational perspective of the role of
the Thalamus in cognition” Apr. 16, 2018, arXiv: 1803.00997v2, pp.
1-16. (Year: 2018).*

Villegas et al., “Decomposing Motion and Content for Natural
Video Sequence Prediction” Jan. 8, 2018, arXiv: 1706.08033v2, pp.
1-22. (Year: 2018).*

Hameroff, Stuart R., “The Brain is Both Neurocomputer and Quan-
tum Computer” 2007, pp. 1035-1045. (Year: 2007).*

Laskar et al., “Correspondence of Deep Neural Networks and the
Brain for Visual Textures” Jun. 7, 2018, arXiv: 1806.02888v1, pp.
1-17. (Year: 2018).*

Singh et al., “Online Real-time Multiple Spatiotemporal Action
Localisation and Prediction” Aug. 24, 2017, arXiv: 1611.08563v6,
pp. 1-10. (Year: 2017).*

Bolus et al., “Design strategies for dynamic closed-loop optogenetic
neurocontrol in vivo” Jan. 25, 2018, pp. i-18. (Year: 2018).*
Herron et al., “Cortical Brain Computer Interface for Closed-Loop
Deep Brain Stimulation” 2017, pp. 1-7. (Year: 2017).*

Saleem et al., “Methods for predicting cortical Up and Down states
from the phase of deep layer local field potentials” 2010, pp. 49-62.
(Year: 2010).*

Yao et al., “Quantum Image Processing and Its Application to Edge
Detection: Theory and Experiment” Jan. 4, 2018, arXiv: 1801.
01465v1, pp. 1-13. (Year: 2018).*

Gyongyosi et Imre, “Entanglement Availability Differentiation Ser-
vice for the Quantum Internet” Aug. 23, 2018, arXiv: 1808.
07859v1, pp. 1-18. (Year: 2018).*

Dahlberg et Wehner, “SimulaQron—A simulator for developing
quantum internet software” Jul. 14, 2018, arXiv: 1712.08032v2, pp.
1-13. (Year: 2018).*

* cited by examiner

US 12,242,923 B2

Mar. 4, 2025 Sheet 1 of 8

U.S. Patent

ot
it e

,

FIG. 1 J—
/ Secsory Pescepting ﬁ\ T thoughs frodottios
egacy Data { riificint tnteligence & Hnman}
., N inteligence 5;,, e
~ o

Neural
Synchronization i Beobtime®
S,

Sysiem 50
"
‘% Motion Reactor
£ 52
% ;
: 53 5%
@’\ Sotion Betertioe,

Bogulader

o ined
Thjscr-Rtate

Hepleator
fre-Gonerations)

Mtian ~o .
T T T TP N
Management 5%
%8 Communication Sevvar &3
F.3 & A
3, Dt
e Configaration Poaditm gan
%, g
58%, 5y B4 53
%,
N ¥ k ¥
e
& “\\ Cowmmcation Ciem 82
/ 5\
Commaer 4 iy
H 83
B 30 ROEOPCH P 355358 ST S Qntosssmmmmmandped et
s Sres fotion Dachvastor 5
5% Mamocy
Dysents
51 Thjecd-State
for-Gunerations
Rt O PUURPPPO

'

?

H

{ Network

} /

. fevice
kY
s/

U.S. Patent

FIG.2

Brain Neural
Synchronization
System 10

Thaiamus

13

7INT

Par atal Lobe

e

LEFT HEMISPHERE

Mar. 4, 2025

Yemm}ra!
g he 23‘,

Sheet 2 of 8 US 12,242,923 B2

~Prefrontal -
. Cortex

0/

Sensory
Data

Chamma

13

Ge:c ipi t:«i
i.b 21_.

Temm,rai

arietal Lo %}
no

\\, /
™

Lohe 23

RIGHT HEMISPHERE

U.S. Patent Mar. 4, 2025 Sheet 3 of 8 US 12,242,923 B2

FIG. 3
Visual Synchronization
Systerm 30

Latera
SR
Genlculate

¥ Primary Vs \
Cortex

5

Sersory Dsta

‘ / Pubvinar
Sequenced) 4

et

’!53?

S
§'.

orehellum | i
%

\Y \{ﬁi fuhﬁ /
Sersory Data
{hsynehronoust

Sersory Data
KSeouenced)

Puivinar
Nucleus

i
e ~.,

/
7 Primary Vist ;a%

N
\ Lo /j
\3@4’/

Goniculate 3B 2

Rutiews Ertiogy

£ o b v 0
URIONGS:

U.S. Patent Mar. 4, 2025 Sheet 4 of 8 US 12,242,923 B2

FiG. 4

Fintion Managem
Muodule 58

U.S. Patent Mar. 4, 2025 Sheet 5 of 8 US 12,242,923 B2

FIG.5

MSP Data Frame 70

Drecimator LocationiD

71

Messurgment
Time

START 72

Deviee iy & 4
Data Flelds

_ Device ID &
CHANGE(s) 74 Select Dats
Fiedds

Dovice 1D &
Dead Time

DEAD(s) 7%

Meassurement
Tims

stor 76

U.S. Patent Mar. 4, 2025 Sheet 6 of 8 US 12,242,923 B2

HG. &
Briificial Brain
Operatios 130

U.S. Patent

5T Messurement

Mar. 4, 2025

CREATE STARY

Sheet 7 of 8

US 12,242,923 B2

e o N N A S A o X T <o N A K, e G A R A o8 G

Tite
B

1

READ Data Recortls!

Frasmes (8 Pﬁij?'%

£

/“\\
Measure E}*s&
" REN
. ;

!

Uy

| CHEATESTOP
-~ festruction -

8

HG.7

SR ;
LT sz
Motion
TN Decimation
/ i Y
o % RACH Sate Madule 51
Vo Tk - ;
S8 S T~ %
\m.:w-“ ~. - - ; /‘(‘. mﬁ\
o ; / ; "\
e ; / Y
VAN CREATE $EED N \
5 e NG et P A
{EGY /»»M tstrurton Py » |
A 7 ousm gy i - i Oblet Slate |
‘ ‘ - Dol ey
s RN
z i\ 33 {
L S /
; X ‘f
H \\, v/
L
. \\) CREATE CHANGE P
L {:\R}{u‘f MO - lnstruction PR /
FHITOUT: ag. fhm e Lo
\/ Ay e
o
- e
‘,«’/M\.‘ e
A N e
W EARCH State S,
v oo Teble
S :
\”””‘ p DateFrame
PN %
{beasre Saza\ﬁ :
| LRGATCDERD j
FAD Sl ntrucon ;
{oue ’{‘ B St ~=i
EE UTE Hetwoik

VS A AR VAR AR Y TR AR A Y VAR A Y VAW AR AR A W MR AR AR Y T A AR AP Y AR AT A A L Y AR

shionization

i

(¥

U.S. Patent

Mar. 4, 2025

Sheet 8 of 8 US 12,242,923 B2

Covernuniastiny
Sesver o F ‘ Q - 3
101 Maotion Reactor
‘ Data Frame pModuie 52
332
BEAD Decimation L
Hemcpiaess
102
..... CUPROCESS .
START losurustinn | ™ J—
103 R e ““_\
N\\ \
\\\ \
PROCERS
et SEFERY et i ot Ootsiact St
. Osfect Stale !
02 '% Merrarry i
! Caxz o
et B /
...... PROCERS PN X o/
CRANGE fnstraition > /
105 e ;.,\ o
.»-*""//ﬁ e d K 3\% e \\
e ~ i N
,,-/M //“ / \
PROCERS P Pl ¢ N,
------- DEAD fnztvustinn P e v / N
106 A
-~ A
el P ‘ \
....... PROTESS e Ve / .
RESEY nstruction v P \
107 e / N
v '\
¢ . \ %
REPLECATE GULATE
PEOCESS GPDRATE Rt g ma\“ Rz&%t;t;am
""""" GYOP Instruction P Prediciabie Data T SR
108 108 IUTPUTY (OUTRUIT) o
ACKNCWLEDGE
Sencheunoas
Exgraution

114

US 12,242,923 B2

1

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR REDUCTION,
OPTIMIZATION, SECURITY, AND
ACCELERATION OF COMPUTER DATA
TRANSMISSION USING NEURAL
SYNCHRONIZATION

COPYRIGHT NOTIFICATION

Portions of this patent application contain materials that
are subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by anyone of the
patent document, or the patent disclosure, as it appears in the
Patent and Trademark Office, but otherwise reserves all

copyright rights.
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates, generally, to computer
networks and communication systems and, more particu-
larly, to the transport and processing of data records/frames
in computer networks and communication systems.

2. Discussion of the Background

The industry’s current methods and processing models
used for transmitting data across the network are antiquated
and are inherently inefficient. Next-generation Cloud solu-
tions are going to be expensive to maintain, prone to failure,
limited in scope, and require complex security requirements
to even function at a basic level. The World’s blind push for
data standardization has focused purely on the human
aspects of information exchange in which data is inflated
(metadata) to accommodate the ability for humans to read it.
Moreover, the data is sent across the network one at a time
in the exact same processing pattern as human verbal
communication on a telephone. Words are spoken and sent
one syllable at a time to be received and heard one syllable
at time.

Nothing has been done to enhance or optimize the trans-
portation aspects of network data. As far as industry is
concerned, the network is a dumb highway that only routes
data to needed destinations and has a planned maximum
traffic load. It is a transportation system with no understand-
ing of the data being moved and therefore has no ability to
organize or prioritize individual data loads. It is mindless
process that treats all data the same.

Sending vast amounts of data across the network using
human verbal communication patterns is completely ludi-
crous and destined for failure. By modeling network com-
munication on primitive human verbal communication, it
has been crippled in its natural ability to optimize process-
ing. As a result, massive amounts of computer and network
resources are wasted in a rather expensive attempt to achieve
next-generational cloud services.

Sending data across the network is a transportation busi-
ness that measures costs through total weight (bytes) and the
number of packages (frames). Until industry sees it this way
and allows their computers access to more advanced forms
of data communication, they will continue to fail and the
costs will continue to rise.

The currency used for determining network costs is
measured in the number of bytes and number of frames
transferred across the network over a given time period. A
byte is how a computer represents an individual character in

10

15

20

25

30

35

40

45

50

55

60

65

2

digital format. Each of these bytes has a number of bits (1°s
and 0’s), usually 8. When added together, they equal a
digital number that cross-lists to a table (code page/character
set) that produces characters, some printable, some not. A
network frame is the package/container that holds the actual
data being transmitted across the network. The frames are
eventually converted to network packets.

Network bandwidth is actually sold and represented in
Kbps (Kilobits per second) or Mbps (Megabits per second).
While the number of bits is good for measuring general
network capacity, it is inappropriate for the understanding
and measuring data costs. Individual bits is a binary trans-
lation concern, it has nothing to do with the formation of
characters and the number of frames needed to communicate
different types of data across the network. So, all data costs
should be measured in byte size per time-interval; such as,
Kilobytes per minute or Megabytes per minute and network
frames per minute.

bytes/time+(frames/time*network overhead)=costs.

The simple goal of network programming is to move the
data from Point A to Point B. For example, an oxygen sensor
produces a measurement at Point A and it is transmitted to
a database server at Point B. What happens between A and
B are where our costs are determined. The data costs is
incurred from the different computer processing levels that
generate all the bytes and frames necessary to prepare a data
payload for network transmission. The payload consists of
the original data plus any protocols or packaging needed to
send it across the network. While the goal of network
programming is simple, its correct implementation is hotly
debated. For the purposes of bandwidth reduction, the
concern must be costs in bytes and costs in frames.

Network data is organized and sequenced with individual
data records/frames. The record/frame is the basic storage
unit and it captures a data event. A data event occurs when
a data producer, such as sensor, at some specific time
produces a data record/frame. Each data record/frame con-
sists of a number of data fields. The data fields contain all the
information about the data event, such as its timestamp,
name, measurement, type etc. A data field can be anything
from images to simple numbers. Both records and fields
have varying degrees of overhead, which are extra bytes
added to the frame payload to identify and organize the data
structure.

Each record also gets additional payload when it is
translated into a structured messaging protocol. Messaging
protocols are at the heart of network programming and
contain all the commands necessary for communicating data
reliably. The message, also known as the Data Frame is
further translated into one or more network frames, and is
ultimately sent across the network. The network frame can
be thought of as a locomotive pulling one box car full of
data. A typical network frame is 1518 bytes of which 18
bytes is for the locomotive and 1500 bytes is for the box car
which is called the MTU (Message Transfer Unit). If the
Data Frame is too large, multiple locomotives will be
required.

Calculating the cost of network communication can be
broken down into the following basic equations:

Messaging Overhead+Record_Overhead+(Field_To-
tal*(Average_Field_Size+Average_Field Over-
head))=Data_Frame_Size

Records_per_Minute*Data_Frame_Size=Payload Bytes_per_minute

ROUNDUP(Data_Frame_Size/Network_Frame_
Size)=Network_Frames

US 12,242,923 B2

3

Records_per_Minute* (Network_Frames*
(Frame_Overhead+Network Overhead))=Net-
work_Bytes_per_minute

(Payload_Bytes_per_minute+Network_Bytes_per_
minute)*Cost_per_Byte=Total_Cost_per_minute.

The computer network industry is currently impaled on
these equations because of outdated and obsolete data pro-
cessing methods. There is no real conscious understanding
of this data other than its basic structure. Resource waste in
everywhere occurring at every level. Industry, instead of
trying to reduce some of these costs, has gone in the opposite
direction. Through unbridled data standardization and meta-
data accumulation, the Record_Overhead and Field_Over-
head numbers have escalated with increases measured in
hundreds, if not thousands, of a percent. Internet Protocol
network frame efficiency is not commonly practiced by any
levels of the application software industry. These figures
need to go in the opposite direction. Otherwise, large data
increases, as seen with next-generation sensor networks, will
eventually grind the entire Cloud to a stop.

The only form of data optimization currently available to
the industry comes in the form of basic pattern reduction,
also referred to as data compression. A compression algo-
rithm removes consecutive repeated bytes and byte patterns
within the data frame and provides a simple control protocol
so they can be reinserted when the data payload is eventually
decompressed. While these algorithms can be effective tools
for reducing some of the network bandwidth (10% to 40%),
these gains are meaningless when faced with the data growth
curves projected by the next generation of sensor and
automated smart systems (100% to 10,000%). Also, in most
sensor implementations where record size is small, com-
pression does absolutely nothing to reduce the number of
network frames with its associated network overhead.

Changing the cost equation requires a radical departure
from the current network data processing model. In the
current model each record is stateless, neither anticipated,
nor predicted. There is no past, no future, just the present
state of the data is known. This restriction is devastating in
its implication to higher levels of data efficiency and chains
the cost equation around the necks of all future generations.
When dealing with highly repetitive (time-series) data
streams such those encountered in sensors networks, smart
devices, and automation systems, a human verbal commu-
nication pattern is neither practical, nor feasible.

Thus, notwithstanding the available hardware solutions,
transport software implementations, architectures, and
middleware, there is a need for a system, method, and
computer program product that provides reduced bandwidth,
increased speed, higher reliability, and better security in the
transmission and processing of data records/frames in com-
puter networks and communication systems. Further, there
is a need for a processing system, method, and computer
program product that provides such reduced bandwidth,
increased speed, higher reliability, and better security, (1)
that can reduce, optimize, secure, and accelerate computer
data transport and processing, (2) that can more efficiently
utilize existing bandwidth in communications systems and
computer networks, (3) that is highly scalable, extensible,
and flexible, (4) that can seamlessly integrate with any
hardware platform, operating system, and any desktop and
enterprise application, (5) that can seamlessly integrate with
any data record/frame protocol, (6) that can be implemented
on any wired or wireless communication medium, (7) that
can be used to create human-level artificial intelligence and

25

35

40

45

4

neural interfaces, (8) and that can eliminate over 99% of
existing data record/frame communication and processing
requirements.

SUMMARY OF THE INVENTION

The primary object of the present invention is to over-
come the deficiencies of the prior art described above by
providing a system, method, and computer program product
that can utilize a neural synchronization architecture to
reduce, optimize, secure, and accelerate the transmission
and processing of data records/frames in communication
systems, computer networks, and the applications utilizing
those systems and networks.

Another key object of the present invention is to provide
a system, method, and computer program product that can
more efficiently utilize existing bandwidth in communica-
tion systems and computer networks.

Still another key object of the present invention is to
provide a system, method, and computer program product
that can reduce the amount of data bytes and network frames
required to be transmitted in communication systems and
computer networks in order to process electronic data
records/frames through the use of thalamic motion.

Yet another key object of the present invention is to
provide a system, method, and computer program product
that can substantially increase the performance and the
end-to-end response time in communication systems, com-
puter networks, and the applications that utilize those sys-
tems and networks to achieve real-time operation.

Still another key object of the present invention is to
provide a system, method, and computer program product
that allows for the conversion of all computer data records
and data frames to data entropy, enabling a significant
increase in system performance and reliability for all data
transmission and processing operations.

Still another key object of the present invention to provide
a system, method, and computer program product that can
reduce, optimize, secure, and accelerate the transmission
and processing of data records/frames in communication
systems and computer networks that is designed to eliminate
unnecessary network frame usage in the transport of com-
puter records/frames and the overhead associated therewith.

It is yet another object of the present invention to provide
a system, method, and computer program product for
reduced, optimized and accelerated data transmission and
processing that is highly scalable, extensible, and flexible.

Yet another object of the present invention is to provide a
system, method, and computer program product for reduced,
optimized, secured, and accelerated data transmission and
processing having an architecture and design that enables
substantially seamless integration with any hardware plat-
form, operating system, and any desktop and enterprise
application.

It is a further object of the present invention to provide a
system, method, and computer program product for reduced,
optimized, secured, and accelerated data transmission and
processing that can be implemented on any wired or wireless
communication medium.

Another key object of the present invention is to provide
a system, method, and computer program product that can
more efficiently utilize existing bandwidth in communica-
tion systems and computer networks using a neural synchro-
nization algorithm for optimizing network data frame trans-
mission and processing through the use of data entropy
encoded in a protocol, referred to as motion signal protocol

US 12,242,923 B2

5

(MSP), that has the structure to seamlessly integrate with
any data record/frame protocol.

Yet another object of the present invention is to provide a
system, method, and computer program product for reduced,
optimized, secured, and accelerated data transmission that
provides the operational characteristics necessary for human
level intelligence processing through artificial intelligence
or a human neural interface.

Another key object of the present invention is to provide
a system, method, and computer program product that
duplications the architecture of the human brain in order to
eliminate over 99% of the existing data record/frames asso-
ciated with computer data network communication.

The present invention achieves these objects and others
by providing a system, method, and computer program
product that implements the brain’s neural synchronization
algorithm for reduction, optimization, security, and accel-
eration of data records/frames and processing in a commu-
nication system or computer network, the system compris-
ing one or more computer devices running a motion
decimation application module and a motion reactor appli-
cation module, a motion replicator module for duplicating
data, a motion regulator module for controlling outbound
dataflow, and a management module for configuring
resources and monitoring system operation. The motion
decimation application and the motion reactor application
are adapted to communicate through wired and wireless
means in a computer network or communications system. A
motion decimation application module is the means through
which data records/frames, such as data produced by com-
puter network devices like sensors and data repositories like
relational databases, is translated from its original format
into data entropy and further encoded with motion signal
protocol (MSP) format for reduced, optimized, secured, and
accelerated transport to a motion reactor application module.
A motion decimation application module also receives syn-
chronous reply data from a motion reactor application and
translates the received data to motion synchronization com-
mands and configuration requests. A motion reactor module
performs the functions of receiving data entropy from a
motion decimation application and sending reply data back
to the motion decimator application. A motion replicator
module performs the function of using data entropy to
reproduce the original computer data record/frame. The
motion regulator performs the function of controlling out-
bound data entropy volume with additional notification
signals for integration with higher forms of artificial and
human intelligence.

The motion decimator application module in coordination
with the motion reactor application module implement a
neural synchronization processing framework that transmits
data entropy through an artificial quantum entanglement to
increase processing and communication efficiency over ten
thousand percent (10,000%).

Further features and advantages of the present invention,
as well as the structure and operation of various embodi-
ments of the present invention, are described in detail below
with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawing, which is incorporated herein
and forms part of the specification, illustrate various
embodiments of the present invention and, together with the
description, further serve to explain the principles of the
invention and to enable a person skilled in the pertinent art

10

15

20

25

30

40

45

55

60

65

6

to make and use the invention. In the drawing, like reference
numbers indicate identical or functionally similar elements.

A more complete appreciation of the invention and many
of the attendant advantages thereof will be readily obtained
as the same becomes better understood by reference to the
following detailed description when considered in connec-
tion with the accompanying drawing, wherein:

FIG. 1 is a functional block diagram of the architecture
required for implementing neural synchronization for the
reduction, optimization, security, and acceleration of data
records/frames and the use of those data records/frames in
real-time analytical decision-making according to the pres-
ent invention.

FIG. 2 is a block diagram of the neural synchronization
process of the human brain. The present invention is based
on duplicating the brain’s data processing framework. Neu-
ral synchronization is the algorithm used to communicate
enormous amounts of sensory and thought data to the
different lobes, cortexes, and layers throughout the brain in
real-time.

FIG. 3 is a block diagram of dataflow between human
eyes and the primary visual cortex. The diagram shows the
neural synchronization process as it applied to the process-
ing of human eyesight. In particular, the diagram shows the
thalamic process for converting asynchronous sensory data
into a synchronous state which is a requirement for neural
synchronization.

FIG. 4 is a screen capture showing the different configu-
ration parameters necessary to implement a neural synchro-
nization process according to the present invention.

FIG. 5 is block diagram of the Motion Signal Protocol
(MSP) data frame used for transmitting thalamic motion.
Neural synchronization communicates using MSP in order
to maintain a multicomponent synchronous state.

FIG. 6 is a screen capture showing the operation of a
simple artificial brain using neural synchronization to pro-
cess Internet of Things (IoT) sensor devices.

FIG. 7 is a functional block diagram of the dataflow of the
motion decimator application which is designed to duplicate
the functional operation of the thalamus.

FIG. 8 is a functional block diagram of the dataflow of the
motion reactor application which is designed to duplicate the
functional operation of the primary visual cortex (V1).

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, for purposes of explanation
and not limitation, specific details are set forth, such as
particular networks, communication systems, computers,
terminals, devices, components, techniques, data and net-
work protocols, software products and systems, enterprise
applications, operating systems, enterprise technologies,
middleware, development interfaces, hardware, etc. in order
to provide a thorough understanding of the present inven-
tion. However, it will be apparent to one skilled in the art
that the present invention may be practiced in other embodi-
ments that depart from these specific details. Detailed
descriptions of well-known networks, communication sys-
tems, computers, terminals, devices, components, tech-
niques, data and network protocols, software products and
systems, enterprise applications, operating systems, enter-
prise technologies, middleware, development interfaces, and
hardware are omitted so as not to obscure the description of
the present invention.

US 12,242,923 B2

7

1. System Architecture and General Design Concepts

The design of the software for the system, method, and
computer program product of the present invention takes a
novel approach based upon duplicating the human brain’s
neurological synchronization algorithm. The system,
method, and computer program product of the present
invention reduces, optimizes, secures, and accelerates the
transport and processing of data records/frames in commu-
nication systems and computer networks through the use of
data entropy. By encoding an object’s data entropy, the
system, method, and computer program product of the
present invention reduces standard data record/frame com-
munication resource requirements by over 99%. The system,
method, and computer program product of the present
invention uses Motion Signal Protocol, referred to as “MSP”
to encode and process data entropy in a like manner to
human neural synchronization, thereby minimizing process-
ing times, and increasing security, and increasing reliability,
and enhancing the capabilities of artificial intelligence, and
expanding the capacity of existing computer networks and
systems.

A. System Architecture

With reference to FIG. 1, a functional block diagram of
the architecture for a neural synchronization system 50 for
reduction, optimization, security, and acceleration of data
record/frame transport and processing is shown. The neural
synchronization system 50 is comprised of a plurality of
modules linked together to integrate into a communication
system or computer network. The system is highly modu-
larized in order to realize more efficient operation and
scalability in a distributed environment, to provide increased
flexibility in implementation, to support significant growth
in both functionality and capacity, and to reduce complexity.
Due to the modular nature of the system 50, any new
software application can be developed and installed as an
integrated component without significant impact on existing
functions. For example, new applications will not require
full regression testing through the entire system. Testing can
be limited to only the new components. As a result, a
significant reduction in life cycle cost can be achieved. The
architecture of system 50 provides a standards-based, modu-
lar, and expandable system that incorporates new software
technology to provide additional capability and capacity. In
particular, the system 50 includes a motion decimator appli-
cation module 51 and a motion reactor application module
52. The system 50 also includes a management application
module 58 for performing administrative functions of the
system 50 including configuration, logging, auditing, and
security functions.

The motion decimator application module 51 is the means
through which computer sensory and/or network devices 57
input a data record/frame stream 58. The motion decimator
application module 51 will break down each data record/
frame stream 58 into a set of objects with associated data
states and will store this object information into memory 60.
Memory 60 will be used to maintain the data state of each
computer network device 57 indexed by a unique identifier.
The motion decimator application module 51 will then
compare future data record/frame stream 58 data against the
predicted state maintained in memory 60 to produce data
entropy 63. Data entropy 63 is encoded as a set of motion
signal instructions that when applied will synchronize data
states. The motion signal instructions will be used to syn-
chronize both the local data state in memory 60 and the
remote data state in memory 60 of the motion reactor
application module 52.

10

15

20

25

30

35

40

45

50

55

60

65

8

The motion reactor application module 52 performs syn-
chronous execution of motion signal instructions. Upon
receiving data entropy 63 from the motion decimator appli-
cation 51, the motion reactor application module 52 will use
the encoded motion signal instructions to synchronize the
data state of memory 60. Upon conclusion of a synchroni-
zation cycle, the motion reactor application module 52 will
trigger the motion replicator module 53 which will repro-
duce the original data record/frame stream 58 and send it to
a real-time or legacy data processing system 55. The motion
reactor application module 52 will then trigger the motion
regulator module 54 which filter and control the volume of
outbound data entropy 63. The structure and operation of the
main application modules 51 and 52 will be described in
greater detail hereinafter following a discussion of the
general design concepts of neural synchronization.

B. General Design Concepts
1. Neural Synchronization

Life is by its own nature impaled on the “arrow of time”.
All lifeforms must be consciously aware of the passage of
time. It is part of the biological process and sits as a
fundamental definition of what it means to be alive. All
lifeforms achieve a conscious state through perception of
their environment using sensory systems. This perception is
accomplished through a rhythmic measurement of space. A
biological process maintains state by performing and apply-
ing these measurements based on a linear time cycle. Since
there exist no world clock (Finstein), the rhythm is set by
each individual lifeform and measured relative to that life-
form (observer). So, existence is based on sensory measure-
ments of 3-dimensional space relative to the time of obser-
vation.

In reference to FIG. 2, in the human brain, time relativity
is calibrated through the hypothalamus 12 which uses the
optic charisma 11 like a stellar pulsar to establish a circadian
rhythm that regulates the cycling of the biological process.
By performing this function, the hypothalamus 12 serializes/
sequences sensory input and synchronizes the execution of
both the left and right brain hemisphere through timing
connections 24.

Each brain hemisphere is individually controlled by the
thalamus 13. The thalamus 13 cycles the linear firing
sequence using a sophisticated set of nuclei internally
sequenced. More importantly, the thalamus 13 maintains a
state of neural synchronization between itself and all the
lobes, cortexes, and layers through these nuclei. The reason
why all thalamic connections are reciprocal is because
two-way communication is mandatory to maintain a syn-
chronous state. Neural synchronization allows the brain to
exist in a single entangled quantum state as sensory mea-
surements are cycled, processed, and applied.

All sensory data 14 arrives asynchronously. The brain
does not control or synchronize the timing of the sensory
observation points. Since there are many different types of
sensory systems that all generate data at different intervals,
the brain will not waste energy or capacity synchronizing
sensory data production. Instead, the thalamus 13 provides
a bridge for all the asynchronous sensory data 14 into the
brain’s synchronous state.

Since the thalamus 13 has an understanding of the passage
of time given to it by the hypothalamus 12, each of its
individual nuclei can maintain state. The thalamus 13 uses
timed measurement intervals to translate all sensory data 14
into flat space-time (Minkowski). Basically, a single slice of
reality. Comparing the slice of space-time against a state
allows the thalamus 13 to produce a measurement of data
entropy. Data entropy is encoded as set of motion signal

US 12,242,923 B2

9

instructions on how to change state and it doesn’t matter
what sensory or object format is being measured. A down-
stream component simply applies these motion signal
instructions to keep the states synchronized in real-time.

When the thalamus 13 conducts the measurement, it will
detect changes/movements in state and will categorize any
detected motion as either predictable or unpredictable.
Unpredictable states are accumulated and their data entropy
is encoded for synchronization. Predictable states are dis-
carded because their results are already known by the
downstream component due to its shared state with thalamus
13. The knowledge is passed between components by the
sheer existence of the timed neural pulse. By discarding
predictable motion states, the brain achieves incredible
transmission efficiency and response time between its syn-
chronized components.

The thalamus 13 distributes the first level of derived data
entropy in two directions. The first path is for sensory
perception and the second path is for thought production.
Since raw sensory perception requires no further refinement,
it can be synchronized directly to the state maintained in the
prefrontal cortex 20 through sensory perception binding
point 16. The prefrontal cortex 20 maintains a state within
the brain that can be described as the state of conscious
reality. Human consciousness perceives and responds to the
state that is maintained in the prefrontal cortex 20. The
prefrontal cortex 20 is the end point for both sensory
perception and thought production which are synchronized
(bound) at different points within the hypothalamic/thalamic
cycle.

The second direction for level 1 thalamic motion data
entropy is thought production. Before a thought can be
produced, it must go through a hierarchically-based system
of intelligence production. The hierarchical production pro-
cess converts sensory data into cognitive objects for iden-
tification, interpretation, and subsequent reaction. The thala-
mus 13 is responsible for coordinating the firing sequence of
all the higher levels that will be executed by the different
lobes of the brain, including the occipital lobe 21, parietal
lobe 22, and the temporal lobe 23. At all levels, the thalamus
13 will maintain state for that level and share it with the
connected component/lobe layer through synchronous con-
nections 18. By doing this, the thalamus 13 creates a single
quantum state shared in by all of its biological components.

Temporal lobe 23 will be fired towards the end of the
thalamic cycle. Temporal lobe 23 has access to the memory
subsystem where thought production is completed. Since the
creation of a human thought has no defined timeline and
searches through the memory subsystem can take additional
time, the thalamic cycle cannot wait for its production. To do
so would stall the brain and inhibit sensory perception. As a
result, thought production is no longer synchronous and any
thoughts produced must arrive asynchronously at another
location in the brain using thought connection 19.

To reenter the neural synchronous state, asynchronous
thought must travel back to the hypothalamus in connection
12 so that it can be sequenced and serialized. When com-
municating sequenced information, serialization guarantees
that information arrives in that sequence. The hypothalamus
12 will coordinate thought production from the temporal
lobe 23 in each hemisphere and synchronize it with the
prefrontal cortex 20 in thought binding point 17. The neural
synchronization system 10 represents the pinnacle of evo-
Iution in intelligence efficiency and speed. By using neural
synchronization, the brain can process enormous amounts of
sensory and thought data in real-time using the least amount
of energy and resources.

10

15

20

25

30

35

40

45

50

55

60

10

2. Neural Synchronization of Visual Sensory Data

Although neural synchronization applies to all forms and
derived forms of sensory and thought data, in reference to
FIG. 3, neural synchronization can be best examined by
tracing the level 1 data flow of the human visual synchro-
nization system 30. This is one of the first levels of the
hierarchical quantum state and demonstrates the bridging of
asynchronous sensory data into the synchronous brain.

Visual Sensory Data as depicted by rabbit 31 is the origin
point of light. This light travels to and arrives at both the left
and right human eye 32 at the same time. This is the
observation point for visual sensory data and creates four (4)
asynchronous data streams each containing a 2-dimensional
representations of a particular portion of sight. These four
data streams intersect at the optic charisma 33 where the
streams crossover. Optic charisma 33 is the first point in the
brain where visual sensory data is relayed. This mixes left
and right human eye 32 data together and sequences the
subsequent processing of the sensory data by both the left
and right brain hemispheres. Basically, it arranges the data
in a linear sequence so that the two sides of the brain can
eventually sync up at the downstream binding points for
conscious thought and sensory perception.

The optic charisma 33 also acts as the first filtering
function in visual sensory data stream. The basics of visual
sensory data is that it is composed of a mixture of cones and
rods. The cones contain the visual details and the rods
contain visual motion. As a cone moves in space their
appearance shifts to that of a rod. The Optic Charisma 33
uses this information to produce four (4) asynchronous data
streams. The two primary data streams 40 carry mixed left
and right eye 32 data containing only rods, representing
about 10% of the original data and are destined for the
superior colliculus 34. The two secondary data streams 41
carry mixed left and right eye 32 data containing cones and
rods that are destined for the lateral geniculate nucleus
(LGN) 38.

The primary streams 40 are the primitive foundation of
sight and are centered on the detection of visual motion. This
part of the visual subsystem was the first to evolve and
provides an animal with an ability to react to visual motion.
The superior colliculus 34 uses information from the cer-
ebellum 35 which acts like a gyroscope to map motion (rods)
to 3-dimensional space. The superior colliculus 34 uses this
information and other higher level reciprocals of this infor-
mation to control neck and eye movement. The output of the
superior colliculus 34 is a set of rods aligned with the
orientation of the head, body, and eyes. The output is
destined for the pulvinar nucleus 37 and the lateral genicu-
late nucleus (LGN) 38 of the thalamus 36.

The secondary visual streams 41 are evolved sight pro-
cessing and only available to higher life forms such as
mammals, primates, and humans. These secondary streams
carry the details of sight and are destined for the LGN 38 of
the thalamus 36. The LGN 38 applies the orientation knowl-
edge coming from the superior colliculus 34 by mapping the
rods back into the secondary visual data stream. This aligns/
stabilizes the 2-dimensional data into 3-dimensional space
before data entropy measurement.

Each nuclei of thalamus maintains state including the
LGN 38. The data itself creates the state. So, the LGN keeps
a copy of the last sensory state for the data produced by both
the left and right human eyes 32. The thalamus 36 cycles the
LGN 38 at a specific time interval. This cycle establishes the
measurement time where all asynchronous input is com-
pared against the predicted synchronous state. For visual
input, the state of all the cones and rods are measured. If

US 12,242,923 B2

11

there is a change in state, it will be classified as data entropy.
Data Entropy is encoded as a set of instructions on how to
change state so that any connected brain component, in this
case the primary visual cortex (V1) 39, can apply the
instructions to remain synchronized.

When you get to the occipital lobe, the cone and rod
instructions become object instructions escalated hierarchi-
cally (V1 thru V4). Here, each layer of the occipital lobe is
measured for object motion. All these different forms of
sensory motion are synchronized to a multi-modal, multi-
layered state control maintained in the pulvinar nucleus 37
of the thalamus 36. This is the central reason that intelli-
gence has both bottom-up and top-down characteristics.

Before the thalamic motion is encoded for transmission to
the primary visual cortex (V1) 39, the motion is classified as
“Predictable” or “Unpredictable”. All predictable states are
discarded and only unpredictable states are encoded for
neural transmission. In this Bayesian algorithmic framework
rests the true power of the brain. The thalamus 36 by
removing predictable motion data out of the data stream
eliminates most of the incoming sensor data so that sensory
perception can fit within the timing window for conscious
binding.

The problem when discussing the Bayesian nature of the
brain is that people’s perceptions of prediction is based only
on top-level cognitive objects. What is the chance a rabbit
will jump left, right, or straight?While this is an activity of
prediction, it misses the importance that that prediction
plays in regulating and filtering sensory data within the
thalamus 36. The rabbit is just a consolidated object that is
composed of tens/hundreds of thousands of smaller predic-
tions ranging from the chance that the rabbit will alter color
to the chance that there will change in a visual cone. The
brain’s prediction is granular and has application on all
levels.

As motion is bound up through components like the
Occipital and Parietal Lobe, it gains greater and greater
hierarchical abstraction (objectification, states-within-
states). For example, sensory patterns become fingers
becomes hands becomes arms and so on. Top-down knowl-
edge is then passed back down the pulvinar nucleus 37 and
used to group smaller objects for measurement; thereby,
refining prediction capability. So, the sensory motion of a
finger is predictable if the hand is performing a certain
activity that may have been predicted by a particular arm
movement.

By doing hierarchical predication in a synchronized state,
the brain increases data transfer efficiency by 100,000% or
more as top-down information flows down to the visual
sensory level 1 (geniculate/V1 layer). This has significant
implications for humans because the efficiency boost allows
us to shift activity and subsequent energy use to higher brain
functions. So, the less we have to do in the bottom of the
brain results in the more we can do on top.

Once predicted motion data has been removed, the
remaining unpredictable motion represents data entropy and
is less than 1% of the original data size. This in the only
information that is required in order to synchronize the state.
The data entropy will then be communicated in real-time
using a neural connection 42 and used to synchronize the
state of the primary visual cortex 39.

Within the human visual sensory system 30 can be seen
the primary function of thalamus 36 is to bridge asynchro-
nous sensory data to the synchronous quantum state and to
synchronize that state up through the various components of
the brain. By performing this function, the thalamus 36

20

30

35

40

45

50

55

60

65

12

filters out all non-relevant visual sensory data and can
transfer information in real-time.
II. Structure and Architecture of System and Modules

A more detailed description of the structure and software
architecture of the system and modules of the present
invention is provided with reference to FIG. 1. Referring to
FIG. 1, the software architecture of neural synchronization
system 50 is shown as implemented in a wired and wireless
network, also referred to as a virtual network. The system 50
and modules of the system can implemented in, be con-
nected to, and/or use any network or virtual network. Such
networks and virtual networks include communication sys-
tems, such as local area networks, wide area networks,
public access networks, internal computer bus networks, and
other well-known systems, and the connections in such
networks include physical, logical, virtual links, or the like,
wireless or wireline connections, all of which would be
readily apparent to one of ordinary skill in the art. The
modularized design of the neural synchronization system 50
facilitates the implementation of the system 50 in a variety
of network environments. Each of the modules described
above and in more detail hereinafter can be connected,
individually, to the network for communication of data and
information in operation of the neural synchronization sys-
tem 50.

The brain is the most highly evolved information proces-
sor in existence. It can run circles around our fastest com-
puters. The brain accomplishes this feat not through over-
whelming capacity, but through absolute efficiency. The
brain does not waste energy or resources in the processing
of intelligence. So, every system, every subcomponent has
evolved to process information in the most efficient manner
possible.

The brain is often referred to as the “Motion Muscle”.
This generalization is essentially correct. The ability to
detect, interpret, and react to motion is the primary function
of the brain. For any lifeform to perceive motion implies a
biological process that has the ability to measure the passage
of time. With humans, this is accomplished by the circadian
rhythm produced in the SCN of the hypothalamus. This
rhythm regulates the brain’s execution cycle which is used
to serialize sensory and thought data to a linear time-line.
This enables the measurement of the same data at two
different points in time which is fundamental to perceive
motion. So, all motion incorporate a measurement of space
based on time sequence.

Duplicating the brain’s neural synchronization process
requires two computer software applications running on one
or more computer devices. These devices can be computer
servers, desktop computers, laptop computer, network appli-
ances, embedded devices, sensory platforms, or any hard-
ware device that incorporates a central processing unit
(CPU), memory storage, and input/output capability. Refer-
ring to FIG. 1, the motion decimator application module 51
runs on one computer device and is responsible for process-
ing sensory and computer data input. The motion reactor
application module 52 runs on the same device or a separate
device and is responsible for processing sensory and com-
puter data output. The two computer software applications
work in unison duplicating the brain’s neural synchroniza-
tion process.

Since both software applications must be synchronized,
the process begins in neural management module 58. Mod-
ule 58 provides an interface that sets the configuration for
both the motion decimator application module 51 and the
motion reactor application module 52. Configuration infor-
mation can be interfaced and stored in the computer registry,

US 12,242,923 B2

13

an initialization file (INI File), or in a relational database
server. This provides for any form of configuration input
including computer graphical interface (GUI), a text editor,
or a commercial database management interface.

In reference to FIG. 4, motion management module 58
shows a GUI interface that sets many of the configuration
controls that are necessary to implement the neural synchro-
nization algorithm. GUI section 121 shows the general
parameters necessary for synchronizing the configuration of
module 51 and module 52. The Location parameter is a
unique identifier to designate a pair of neural synchroniza-
tion components. The Protocol parameter is currently set to
Internet of Things (IoT). Neural synchronization can func-
tion effectively against any form of computer data protocol
or data stream format. The two components need to agree
upon protocol format so the correct set of parsing and
reproduction tools/skills are applied. These computer data
protocols can be preprogrammed or learned. The Input
parameter designates the interface type for data input. The
Input parameter is currently set to MySQL which is a
standard commercial relational database interface. The Out-
put parameter designates the interface type for data output.
The Output parameter is currently set to BENT which is a
network socket implementation of a light-weight messaging
protocol for Internet Protocol (IP) networks. The neural
synchronization process can use any form of transmission
format and run on any form of computer or neural network.
The next set of general parameters are associated with set
diagnostic modes and various resets within the neural syn-
chronization process.

GUT sections 122, 123, and 124 will be discussed in detail
further on. GUI Section 125 contains the parameters
required for the Input parameter selected. In the current
selection, database access parameters are required. Each
form of data input can have its own unique parameters that
are separate from the protocol variable selection. This allows
the interfacing of any form of data input regardless of
protocol whether it comes from a database, a data stream, a
memory segment, optical disk, satellite transmission, or any
form of internal or external data transmission.

GUI Section 126 shows the communication parameters
necessary for synchronizing with up to two motion reactor
applications. Neural synchronization only requires one
motion reactor application to function correctly. However,
since the brain’s neural synchronization is being duplicated,
the system is designed to incorporate two motion reactors
that function similar to the left and right brain hemispheres.
GUI Section 126 contains parameters that are specific to
communication messaging protocol used for sending thal-
amic motion. Any messaging protocol can be used with a
preference for light-weight messaging protocols. GUI Sec-
tion 126 will contain settings such as encryption level or
timeouts that are specific to the message protocol selected.
Once the configuration parameters have been set and syn-
chronized, the motion decimation application module 51 and
motion reaction application module 52 can begin computer
process execution.

Referring to FIG. 1, a computer network device 57 may
be any one of a number of different devices including a
desktop computer, laptop computer, computer server, input/
output device, personal digital assistants (PDA), a pager, a
mobile phone, IP phone, electronic watch, barcode scanner,
digital camera, electronic sensor, smart home device, and
other network enabled devices. A computer network device
57 will produce a stream of asynchronous data record/frame
stream 58. Stream 58 will be composed of information

20

30

35

40

45

55

14

encoded in some repetitive computer data format (protocol)
produced and encoded according to some linear time stan-
dard or interval.

Referring to FIG. 3, the motion decimator application
module 51 reproduces the functionality of the pulvinar
nucleus 37 and the lateral geniculate nucleus (LGN) 38. This
functionality forms the central core of the neural synchro-
nization process. By combining these components, neural
synchronization can be implemented in a single software
application. However, for incorporation into higher brain
simulations and hieratical implementations, the pulvinar
nucleus 37 functionality would need to be moved to its own
separate computer software application. It is principally
responsible for prediction management and synchronization
throughout the different levels of the brain and would need
to be detached to in order to function efficiency. For most
computer data applications, prediction management and
synchronization can be handled by the motion decimation
application module 51 and the motion reactor application
module 52.

The motion decimator application module 51 executes on
a specific timing cycle. Referring to FIG. 4, GUI Section
122, the Cycle Time parameter in this instance has been set
to 3000 milliseconds or 3 seconds with a Retry Delay
parameter set to 250 milliseconds or second for precision
adjustment. Since a quantum state is being maintained by the
motion decimator application module 51, the cycle must
complete execution before another module 51 cycle begins;
otherwise, overlapping cycles will corrupt the synchronized
quantum state.

Referring to FIG. 1, during each cycle the motion deci-
mator application module 51 will first establish the mea-
surement time which is a point for temporal and spatial
decorrelation. It is basically the spot where time and space
must freeze so linear measurements may occur. Time and
space will remain frozen during the neural synchronization
process. This is mandatory since the process involves syn-
chronizing multiple component states separated by the speed
of light.

It is important to note that the motion decimator applica-
tion module 51 and the motion reactor module 52 exist in
two different time frames. Like the human brain, the com-
ponents are separated by distance (speed of light). Anytime
space is measured, time must stop at the measurement point
“Observer Effect”. This creates a problem trying to synchro-
nize a second observation point such as the motion reactor
application module 52. To overcome the problem of spatial
and temporal dilation, module 51 and module 52 are artifi-
cially entangled in order to share state. The entanglement is
formed by synchronizing observation data entropy inside of
a separate faster synchronized communication process
between module 51 and module 52. By doing this, synchro-
nous communication acts like a tunnel without time between
the two components so they theoretically exist in the same
state in the same moment in time even though they are
separated by distance.

As one or more computer network devices 57 produce
data records/frames 58, the motion decimator application
module 51 will store the incoming data records/frames 58 in
memory 60 organized and indexed by the unique ID of
computer network device 57. The individual components
(data field structures) will create memory objects each with
their own data state. For example, an address data field
would have an associated object and the address data in the
field would be the state. The composite of all the data field
states will represent the overall state of the computer net-
work device 57.

US 12,242,923 B2

15

As subsequent data record/frame 58 input arrives, the
motion decimator application module 51 will compare the
state of the currently read data record/frame 58 with the
predicted record/frame state for computer network device 57
stored in memory 60. Any changes between the input state
from record/frame 58 and the predicted state from memory
60 will be identified as data entropy 63.

If a state can be predicted, then there is no need to
communicate its data while in a synchronized state. Only
data entropy 63 is required. By sharing state, the motion
decimator application module 51 and the motion reactor
application module 52 generate and share prediction knowl-
edge 64.

The motion decimator application module 51 takes data
entropy 63 and encodes it into a Motion Signal Protocol
(MSP) format to prepare it for transmission. MSP is a set of
motion signal instructions that when applied will synchro-
nize the two data states maintained in memory 60 of both
module 51 and module 52. MSP will be explained in greater
detail further on. The motion decimator application module
51 will process and pack all data entropy 63 motion signal
instructions into a network data frame for synchronous
communication to the motion reactor application module 52.

Once a network data frame is constructed and ready for
transmission, the motion decimator application module 51
will pass the network data frame to the communication
client module 62. The communication client module 62 will
encode the network data frame in a network messaging
frame and will transmit the network data frame to the motion
reactor application module 52. Since this is a synchronous
communication process, the motion decimator application
module 51 will enter a wait state until the network data
frame is processed by the motion reactor application module
52 and acknowledged. The acknowledgement signals that all
MSP have been processed successfully and that memory 60
in both module 51 and module 52 are synchronized.

The motion reactor application module 52 named in
reference to Newton’s Laws of Motion provides high-speed
data entropy network services to any number of motion
decimator applications module 51. Each motion decimator
application module 51 has a location code that uniquely
identifies its operational and configuration requirements to
the motion reactor application module 52. The motion
decimator application module 51 unique ID is used by the
authentication process during server connection and forms
the basis for providing device-to-device security and remote
configuration. Authentication can be composed of any num-
ber of levels and authentication sources that can authorize
device-to-device connection. The motion reactor application
module 52 is available on-demand and will facilitate secure
communication sessions to the motion decimator application
module 51, management agents, and other supporting soft-
ware applications.

Once a motion decimator application module 51 has
connected to a motion reactor application module 52, it will
download any configuration 59 and prediction 64 informa-
tion and will immediately begin transmitting data entropy 63
network data frames. The motion reactor application module
52 is a multi-threaded application server that launches
individual motion reactor instances for each network data
frame it receives. Once activated, the motion reactor appli-
cation module 52 will identify the package’s origin and
protocol type and will set itself accordingly. The motion
reactor application module 52 is designed to rapidly execute
motion signal protocol (“MSP”). As each network data
frame is unpacked, the motion reactor application module 52
applies the contained MSP instructions to the object states

20

25

30

35

40

45

16

stored and maintained in memory 60. The MSP instructions
provide all the necessary information to synchronize the
object states that are also being maintained in memory 60 of
the motion decimator application module 51. After all MSP
instructions for a given network data frame are applied, the
motion reactor application module 52 will provide an
acknowledgement back to the motion decimation applica-
tion module 51.

An MSP STOP instruction has special significance and
will signal the end of the data stream of a single temporal
experience. Upon receiving a MSP STOP, the motion reactor
application module 52 will perform motion prediction pro-
cessing and will trigger the motion replication module 53
and the motion regulator module 54. To keep the states
synchronized, all predictable motion must be applied to the
state maintained in memory 60 of the motion reactor appli-
cation module 51. Once all predictions are applied, the states
will be synchronized.

Motion replicator module 53 is responsible for either
regenerating the original data protocol or generating an
alternate form of data protocol. Module 53 provides the
equivalent function of thalamus in that it regenerates sensory
perception into prefrontal cortex memory. For computer
processing, this allows output of the neural synchronization
process to be either be synchronized with some type of
real-time interface or integrated to a legacy data processing
destination in module 55. Legacy in this definition is a data
processing system that is incapable of interfacing synchro-
nous data entropy. Since the original data stream arrived
asynchronously, it has an option for departing asynchro-
nously.

The motion replication module 52 can also be pro-
grammed to generate any type of protocol, data structuring,
or Standards-based format regardless of its original format.
While these data constructs have significant value to their
final computer system destinations, they have little value
within the neural synchronization system 50. In the trans-
lation to data entropy 63, all of these metadata components
would be classified as predictable and would be subse-
quently removed from the network data frame. Whether
these formats are added back in or substituted during motion
replication is irrelevant to the process and doesn’t affect the
reduction, optimization, security, and acceleration of the
data transmission since they are not being transmitted any-
way. So, the motion replication module 52 can actively
function as an inline protocol bridge between differing
network data formats.

The motion regulator module 54 is responsible for filter-
ing and controlling the volume of outbound data entropy for
the purpose of interfacing higher forms of intelligence both
artificial and human based 56. The neural synchronization
process interfaces higher forms of intelligence 56 to receive
prediction information regarding objects stored in memory
60 as a consequence of the outbound data entropy. While the
motion decimation application module 51 is centered on
predicting individual object motion, the next level up for
intelligence production is to begin to group the individual
objects in memory 60 in order to identify multiple object
prediction patterns that can then be feed back down to the
motion reactor application 52 with prediction 64 and syn-
chronized with motion decimator application module 51.

The motion regulator module 54 will also classify and
prioritize a set of motion notifications 65 destined for either
conscious or subconscious decision-making. The following
motions are used:

Low-value Predictable Motion—Signal for subconscious

decision-making.

US 12,242,923 B2

17

Low-value Unpredictable Motion—No signal sent, data

ignored.

Medium-value Predictable Motion—Signal sent for sub-

conscious decision-making.

Medium-value Unpredictable Motion—Signal sent for

conscious notification and possible priority escalation.

High-value Predictable Motion—Signal sent for both

subconscious and conscious decision-making.

High-value Unpredictable Motion—Signal sent for con-

scious decision-making.

The notifications are intended to provide data entropy
dataflow regulation with both artificial and human intelli-
gence interfaces to value specific areas of the data stream to
help prioritize decision-making.

The motion regulator module 54 can be used to throttle
the amount of data relative to the amount of available system
capacity and available bandwidth. This is useful when
events or special situations cause large data spikes which
have a tendency to overwhelm a network. Governing the
amount of data inside of the dataflow prevents data overload
by preprocessing irrelevant data out of the stream by
degrees. The motion regulator module 54 can be pro-
grammed with a maximum output level and will automati-
cally adjust its OUTPUT level using various data analytics
to determine data relevancy and importance. The motion
regulator module 54 can be programmed with a maximum
INPUT level and will work in unison with the motion
decimation application module 51 by triggering its dataflow
regulation functionality. The motion regulator module 54
protects the network and computer infrastructure by guar-
anteeing a “never to exceed” specific data capacity limit.

To summarize, the motion decimator application module
51 will capture a moment in time for data measurement. The
neural synchronization system 50 can be best thought of as
a system for processing linear experiences. The motion
decimator application module 51 maintains object-state for
any type of data that constitutes that experience. A computer
network device 57 can be any device on a network that
produces data records/frames 58. Sensors and smart devices
are the most prevalent. A timing cycle is used to delineate the
length of the experience. For each experience, the motion
decimator application module 51 will:

quantify the experience to a specific time frame (temporal

decorrelation) based on observation time,

measure every object’s (data record’s) motion (spatial

decorrelation) arriving from any number of computer
network devices 57 at measurement time,

compare experience with predicted experiences to pro-

duce data entropy 63,

translate all data entropy 63 to a set of motion signal

instructions,

pack motion signal instructions organized by experience

for network transport,

transmit synchronous packed motion signal instructions

to the motion reactor application module 52,
share prediction knowledge with the motion reactor appli-
cation module 52.

The motion reactor module 52 is a network server that
functions on-demand and is initiated by the synchronous
requests from the motion decimator application module 51.
When a motion request is received, the motion reactor
application module 52 will:

unpack motion signal instructions from the arriving net-

work data frame,

restore the timing of the experience (temporal correlation)

based on observation time,

10

15

20

25

30

35

40

45

50

55

60

65

18

apply all motion signal instructions to the existing object-
state in memory 60 (spatial correlation),

trigger predictable motion production,

trigger motion replication to either duplicate the original
data stream or bridge to another data stream,

trigger motion regulator to filter and control the volume of
outbound data entropy 63,

acknowledge successful processing of motion signal
instructions and share prediction knowledge with the
motion decimator application module 51.

By using the brain’s neural synchronization algorithm, the
motion decimator application module 51 and the motion
reactor application module 52 exchange computer data in
the exact same manner as the human thalamus processes
neural information to the various components in the brain.
This technique increases network data efficiency by three or
more orders of magnitude because 99% of data never
actually has to be transported across the network to be
comprehended and reproduced on the other side.

A. Motion Signal Protocol

Referring to FIG. 1, after a data record/frame 58 has been
analyzed and its data entropy 63 has been identified for
transmission, it will need to be converted into Motion Signal
Protocol (“MSP”). Each data record/frame 58 is wrapped
with a unique identifier and a set of command codes that
provides instructions for applying data entropy. The motion
decimator application module 51 and the motion reactor
application module 52 use request/reply communication
modules 61 and 62 where these motion transactions are sent
and acknowledged in synchronous real-time. The identifier
provides reference to the data’s origin/identification and the
command code tells the motion reactor application module
52 what specifically to do with the data.

Using MSP, the motion decimator application module 51
provides the motion reactor application module 52 with
specific instructions on how to reproduce the data state. Both
processes use object state memory 60 to maintain copies of
previous data generational object-states. MSP keeps these
data sources completely synchronized and only requires the
smallest fraction of original record be sent across the net-
work. If only one data field changes, then only one data field
is transmitted. The data field change (data entropy 63) is all
that is needed for the motion reactor application module 52
to synchronize data state.

The following motion signal codes are currently sup-
ported:

CYCLE_START—Signal marks the start of a data pro-
cessing cycle and will contain the Measurement/Deco-
rrelation Time.

CYCLE_STOP—Signal marks the stop of a data process-
ing cycle and will initiate DEAD processing and trigger
end of cycle processing.

SEED_OBIJECT—Signal carries all the data fields of a
record/frame and is used to seed the tracking process.

CHANGE_OBIJECT—Signal carries only the changed
data/frame fields which are classified as unpredictable.

CAUSE-EFFECT_OBJECT—Signal carries derived
cause and effect data and is used for exchanging
prediction information.

DEAD_OBJECT—Signal identifies a data source that
missed its scheduled data production.

EXPERIENCE_RESET—Signal resets various states and
other components within the neural synchronization
process.

To mimic the human process, the motion decimator

application module 51 cycles on a specific time interval to
divide the data stream into specific groups of data records/

US 12,242,923 B2

19

frames 58. Each data group represents a single sensory
experience. The motion decimator application module 51
during each cycle will get the current time and produce a
CYCLE_START motion command. This establishes the
start of the experience where time is frozen (time decorre-
lation) and motion measurements are taken (spatial decor-
relation). All data records/frames 58 produced up to the start
time will be compared with predicted generations of data to
produce data entropy 63, converted to motion signal instruc-
tions, and packed into high-density datasets, and encoded
into a network data frame. Once all the data records within
the experience are processed, the motion decimator appli-
cation module 51 will create a DEAD_OBJECT for any data
source that missed it scheduled production. Finally, a
CYCLE_STOP command will be produced to end the expe-
rience.

Referring to FIG. 5, the MSP data frame 70 shows the
general layout of an MSP data frame. It carries an identifier
71 for Motion Decimator Application Module 51 and then a
series of MSP instructions. Each MSP instruction can be
attached to a data segment that contains either additional
information or portions of the original data record/frame.
MSP is designed to carry any originating input data record/
frame whole or in pieces.

Motion Signal Protocol provides the ability to convert
3-dimensional space measurements into a set of linear
instructions that reflect the changes in that space from one
experience to the next. These instructions then can be
packed into a single data frame or split across many data
frames. Since the instructions are of linear nature, the
communication of MSP data frames needs to be synchro-
nous and serialized.

B. Motion Prediction

Referring to FIG. 1, prediction processing takes the
following three forms which can be mixed and can be
applied in ascending or descending order and can be applied
at all levels of hierarchical intelligence production within a
neural synchronization system 50.

1. Primitive Prediction

The primitive form uses a single generation of previous
data to predict the future pattern. There are many data fields
in a computer record that will show primitive motion. For
example, timestamps, sequence numbers, counters, and
indexes all show motion. Their associated data fields change
every iteration within the time-series data stream. However,
their motion values can be predicted by using a single
generation of previous data. For these data fields, the dis-
tance of change is measured to identify a sequential incre-
ment/decrement that can be used to predict the next change.
A SEED Instruction will produce the initial value. After that,
only the unpredicted sequential increment/decrement will be
encoded. For example, with a time field, if the first value
received was 12:00:00 and the second value was 12:00:10,
then the increment of ten (10) seconds would be sent. If the
third reading is 12:00:20, then no value needs shipping
because the increment has been predicted. So, even though,
the time field does exhibit actual motion, it doesn’t require
transmission because the neural synchronization system 50
uses primitive prediction to project its future value.

2. Multigenerational Prediction

The multigenerational form uses two (2) or more genera-
tions of previous data to predict the future data pattern. A
single generation of data may not reveal a motion pattern
when the pattern stretches over multiple cycles of measure-
ment. For example, when a radiation sensor detects standard
background radiation, it may need several cycles to discern
this from an actual radiation threat. If we assume the sensor

10

15

20

25

30

35

40

45

50

55

60

65

20

produces a one (1) through ten (10) measurement and we are
going to compare five generations of previous data to predict
its future motion, consider the following:

Sensor Cycle Series #1-1,1,0,1,1 (Clear),

Sensor Cycle Series #2-0,1,0,1,1 (Clear),

Sensor Cycle Series #3-2,0,1,1,1 (Alert),

Sensor Cycle Series #4-2,0,2,0,1 (Alert),

Sensor Cycle Series #5-1,1,1,1,1 (Clear).

Multigenerational sensor readings create specific motion
patterns that can be learned. More importantly, the number
of data generations that are measured is equal to the number
of data generations that can be predicted. So, by measuring
five (5) generations in the example above, we can now
attempt to predict the next five (5) generations.

Multigenerational prediction creates a rather unique
operational characteristic of neural synchronization system
50 in that it allows system 50 to look forward in time in order
to see back in time. Specifically, this form of prediction
allows the neural synchronization system 50 to output data
faster than real-time input. In the example above, system 50
can output the fifth (5th) measurement in response to the first
(1st) measurement in the predicted multigenerational
sequence. So, by moving output forward in time, neural
synchronization system 50 can react to sensory data before
its actual creation point.

This is exactly similar to the brain’s operational frame-
work for data entropy. In reference to FIG. 3, if the 1st
measurement occurs at the optic charisma 33, then the
second (2nd) generation measurement would be occurring at
the observation point of the right and left human eye 42. In
other words, sensory perception would actually be occurring
at observation time which would compensate for the time it
takes the brain to complete one cycle. Now, let’s say that it
takes 2 cycles for light travelling from the creation point of
rabbit 31 to reach the right and left human eye 32. If the
brain is outputting a fifth (5th) generation prediction, then
sensory perception is running faster than its real-time cre-
ation.

3. Hierarchical Prediction

The hierarchical form uses high-level consolidated
objects to predict the future pattern. To understand this
hieratical concept consider the following example: The first
level of data states consist of 1000 computer network device
57s producing facility security sensor data. The next level
up, which would correspond to the second layer of the
occipital lobe, would group the 1000 computer sensors into
100 rooms (objects). The third level would group the 100
rooms into 10 floors. The fourth level would group the 10
floors into 1 building. At each of these levels, consolidated
object intelligence can produce prediction knowledge that
can be passed back down to level 1 to refine prediction
capability. A particular floor may reveal a particular predic-
tion pattern; for instance, if the floor were empty late at
night. Hierarchical Prediction has the effect of eliminating
large portions of the level 1 sensory data because predicting
high level objects automatically predicts all of their corre-
sponding lower level objects in the hierarchy. So, the floor
prediction provides the room predictions which provides the
corresponding computer network device 57 predictions.

C. Multi-Record Packaging

Current network optimization science is focused on
reducing network overhead. Internet Protocol (IP) networks
can generate a lot of overhead depending on the paths taken
by individual networks frames as they are relayed around the
network. While this pursuit has serious relevancy, it gains
are insignificant against solving the true problem. The real

US 12,242,923 B2

21

issue is that the industry uses far too many network frames
transmitting too little information.

When dealing with data records/frames 58, the current
rational is that only one data record/frame 58 can be shipped
across the network at a time. So, a data record/frame 58 will
always require at least one network frame. This is antiquated
thinking and rooted in the human requirement of commu-
nicating one piece of information at a time. Forcing com-
puters to send vast amounts of sensor and repetitive com-
puter data in a two-dimensional manner reminiscent of a
telephone call creates a problem that cannot be fixed. Trying
to reduce overhead inside of such a model is the equivalent
of bailing out a sinking ship with a teaspoon.

The best way to reduce network overhead is to break the
one record-one frame approach and package multiple data
records/frames together into a single network frame. This
requires certain enhancements to the data frame. Specifi-
cally, the data frame is redesigned to carry a dataset, instead
of a data record. A dataset is basically a computer software
memory model that allows records to be stored and accessed
in multiple rows. Datasets are most commonly used for
storing multiple records once they have been retrieved from
a database server. Multi-record packaging allows a single
network frame to carry large numbers of high density data
entropy objects eliminating unnecessary network frame
waste.

The ratio of records to network frames will be dependent
on not exceeding the maximum MTU size of 1500 bytes for
typical IP networks. Exceeding this number will instantly
double the amount of network overhead because an addi-
tional network frame will be required. So, the goal is to get
as many data entropy objects in without going over to
prevent uncontrolled frame fragmentation. With the Motion
Decimator, which only extracts the changed data fields and
records, a ratio from 10-to-1 up to 1000-1 is possible. By
increasing data density in the MTU, most data streams will
be able to reduce network frame requirements by 99%,
jettison all the unnecessary network overhead, and acceler-
ate network data delivery to near real-time.

D. Dead Reckoning

To assume success in data processing requires a system
that can count the dead. When measuring generational data
there is always a possibility that a given data generation goes
missing or dies. In other words, the data producer failed to
create its scheduled data object on time or some other
intermediate system failure occurred that may have
destroyed the record. Regardless, when expected data is
missing out of the stream, it must be classified as an
abnormality and accounted for in any system that assumes
success.

Referring to FIG. 1, both the motion decimator applica-
tion module 51 and the motion reactor application module
52 implement a system of Dead Reckoning where missing
data records/frames 58 are identified and processed. Dead
Reckoning uses both the timestamp and the sequential time
increment of a record to predict success. Module 51 begins
with a CYCLE_START MSP instruction and attaches the
current measurement time. This timestamp will become the
basis for all Dead Reckoning calculations performed by both
module 51 and module 52. After all its data records/frames
58 for a given cycle (time segment) are processed, the
motion decimation application module 51 will perform the

10

15

20

25

30

35

40

45

50

55

60

65

22

following calculation on all states that were not updated
during the current cycle:

IF(Current_Start_Time+
Record_Time_Increment>=Last_Record_Time)

THEN create DEAD_OBJECT

Once the dead calculation is complete, module 51 will
produce a CYCLE_STOP command.

When the motion reactor application module 52 receives
a CYCLE_START command, it will simply store the deco-
rrelation timestamp for later use. Module 52 will then
process all the records in the cycle including the list of
DEAD_RECORDs. A CYCLE_START command has no
relevancy unless there is a corresponding CYCLE_STOP
command. The CYCLE_STOP command is the final motion
signal to conclude an experience and generate all predicted
data. At this point, module 52 will perform the following
calculation:

IF(Cycle_Start_Time+
Record_Time_Increment=Last_Record_Time)
AND (!DEAD)

THEN generate predicted record

Network computer devices have success rates easily mea-
suring above 99%. Dead Reckoning capitalizes on this
success. By counting the dead, the motion decimator appli-
cation module 51 provides the motion reactor application
module 52 will all the knowledge it needs to reproduce the
data flawlessly with the least number of bytes required and
in many cases no bytes at all. Module 52 performs all
reactions in real-time and produces synchronous acknowl-
edgements to the Module 51 on the success or failure of all
MSP instructions. Failures in the process can result in
self-diagnostics and resets in various components within the
quantum state of the neural synchronization system 50.
These additional precautions are required because inaccu-
rate dead reckoning can cause the replication of fictitious
data records/frames 58.

E. Calculating Time Relativity

Data entropy is based on a precise measurement of two (2)
slices of 3-dimensional space at two (2) points in linear time.
In the human brain and in the motion decimator application
module 51, these two points in time are created by a cycle
time. All human and computer processes are identical in the
sense that they all must cycle to maintain state. A key to
understanding the calculation for data entropy is recognizing
the difference between the data observation cycle time and
the measurement cycle time. These are two (2) different
points in time create a relativity problem that must be
accounted for when calculating data entropy. The observa-
tion point is the time when data is first created in a computer
network device 57, such as when an oxygen sensor produces
a periodic reading. The measurement point is the time when
the data is measured by the motion decimator application
module 51.

Consider that a computer network device 57 may be
producing data every 10 seconds and there may be a
thousand (1000) of these device 57’s all producing data at
some interval of that 10 seconds. The device 57’s are not
synchronized with the motion decimator application module
51 and therefore exist in an asynchronous relationship. So,
even if the motion decimator application cycles at the same
interval of 10 seconds, all the different 57 devices may be at
different points in the cycling of their own data observation
process, some faster and some slower. As a result, the
measurement cycle time of the motion decimator application
module 51 cannot be used for calculating data entropy.

US 12,242,923 B2

23

Instead, the motion calculation must be performed using the
observation cycle timing of each individual computer net-
work device 57.

The motion decimator application module 51 compen-
sates for relativity by calculating each individual computer
network device 57 based on the data record/frame observa-
tion time measured separate from its measurement cycle
time. By doing the calculation this way, the motion deci-
mator application module 51 allows the data from a com-
puter network device 57 to enter a synchronous state while
still preserving its asynchronous origin forming an artificial
quantum entanglement between two sets of computer
memory. This effectively separates the measurement time of
the motion decimator application module 51 from the obser-
vation time data entropy calculations for f computer network
devices 57. This has special significance because it allows
the motion decimator application module 51 to cycle at
different speeds relative to the computer network devices 57
without altering the data entropy calculation.

Time relativity is also compensated within data entropy
DEAD MSP instructions. A DEAD instruction is created by
the motion decimator application module 51, so the mea-
surement time must be preserved for use by the motion
reactor application module 52. This preservation is per-
formed as part of the thalamic motion START MSP instruc-
tion which contains the measurement time. Dead reckoning
calculations, as previously described, performed by the
motion reactor application module 52 will use the measure-
ment time in order to correctly interpret the time relativity to
the observation point of the dead data record/frame.

F. Data Security

Data Entropy encoding is the safest method for secure
data transport regardless of encryption level. It is a process
where all repetitive data and frames are removed from the
network transmission. Multiple frames are then condensed
into packed frames of non-repetitive data. These frames are
finally encrypted and transferred in real-time across the
network. All methods and tools for breaking data encryption
require large volumes of highly repetitive sampling data in
order to crack the code. A data entropy encoding just doesn’t
provide enough data of a repetitive nature for these algo-
rithms to function correctly or at all. Data entropy encoding
blocks an interception and decryption by limiting time,
limiting frames, limiting repetitive data, and limiting access.

More importantly, if the encryption were to be compro-
mised, the use of the intercepted data would be severely
limited. The two applications module 51 and module 52
maintain a state model of all the computer network devices
57 and that model determines how data entropy is processed
in and out of the network data frame. Without this state
model to interpret the data record/data frame flow, much of
the data captured would be meaningless. It would be the
equivalent of trying to determine the contents of a high
resolution image using just a handful of assorted pixels.

Data entropy is the principal reason that neural commu-
nication has been so difficult to decipher in neuroscience. As
an outside observer who does not share synchronous state,
there is no foundation to understand the significance of the
data entropy encoding. For example, one neuron may con-
tain instructions for an entire image, a second may only
carry instructions to update a few cones/rods, and a third
carries nothing. From an outsider’s perspective, it appears
chaotic.

A more significant benefit of a data entropy encoding is
that it reduces the data payload to such a degree that there
is excess bandwidth available to implement the following
two new forms of data security:

10

15

20

25

30

35

40

45

50

55

60

65

24

1. Ghost Data Security

Ghost Data is a process for adding fictitious data frames
or data records to the data stream in controlled amounts. The
Motion Decimator creates a ghost data frame and inserts it
into the network data stream. The Motion Reactor identifies
these ghost data frames and automatically removes them.
Ghost data is based on a copy of the original data frame or
record but will have its final contents systematically altered.
Use of a Ghost Data stream makes it virtually impossible to
distinguish what data is real since the framing cycle and
packing sequence will only be known to the motion deci-
mator application module 51 and the motion reactor appli-
cation module 52 which negotiate and maintain their own
internal rotating combination. Referring to FIG. 4, GUI
section 126, the Ghost Parameter sets the amount of ghost
data frames that are transmitted with the data entropy 63
data.

2. False Flag Security

Sensor-based data streams when measured together at any
single point in time create a situational picture. Accessing
and coopting that sensory picture is a vulnerability often
portrayed in movies where intercepting the sensor network
and changing its readings provides access to top secret
facilities. Guards are completely unaware because their
monitors show nothing. This type of internal attack is a
genuine risk and it highlights the fact that sensor data
streams are highly vulnerable to attack and many of these
attacks can go undetected.

False Flag security is designed to prevent internal attacks
by fooling the attackers. The motion decimator application
module 51 will create a fabricated data stream where a
specific pre-defined situational picture is exposed. The real
decimated data stream is actually hidden inside of the false
data stream. Attackers will see a completely fictitious sensor
picture. Any manipulation of that picture will have no effect
on standard operations and will instantly be detected.

II1. Operation of System and Modules
A. Self-Diagnostic Analysis

Time is a major impediment in analyzing the results of a
computer implementation of the neural synchronization pro-
cess. Referring to FIG. 1, this is especially the case when
analyzing a shared quantum state in real-time which is the
primary function of neural synchronization system 50. Any
attempts to get scientific measurements slows the timing of
the cycle of the motion decimator application module 51 and
subsequent operation of the motion reactor application mod-
ule 52. Since the algorithmic model is based on linear time
measurements, these outside measurements corrupt the data
sampling. Furthermore, any attempts to perform post-analy-
sis on the shared quantum states is useless. Since the
analysis is occurring outside of real-time, it can only pro-
duce superficial results that may not be reflective of the true
quantum states at the various points in the time.

The problem rest in the fact that to properly diagnose and
analyze the operation of neural synchronization requires that
a connected component participate in the synchronous rela-
tionship in order to perform real-time data analytics, the
same way the brain does. This participation makes it a part
of the neural synchronization cycle and allows the compo-
nent to perform real-time data analytics in the correct
sequence at the right moment in time.

The solution rests in understanding that analytics is part of
a decision-making process that requires some form of inter-
pretation. Neural synchronization system 50 duplicates the
function of the human thalamus and is therefore incapable of
performing interpretation. While system 50 uses interpreta-
tion, such as object identification and motion prediction, to

US 12,242,923 B2

25

enhance its communication efficiency, it cannot make these
interpretations. Interpretation is a function of the conscious
mind which can only be performed in the frontal lobe of the
brain. So, the requirements for self-diagnostic analysis can
only be solved by simulating a frontal lobe process and
attaching it to the neural synchronization cycle. In other
words, we have to add another brain component that is fast
enough and in sequence to analyze the quantum state of
system 50 in real-time.

The brain can be simulated using a graphical user inter-
face software program that can cycle the motion decimation
application module 51 in sequence with a data simulator and
data analyzer. The analyzer is part of a frontal lobe decision-
making process and is functioning as a sensory perception
module 55. Basically, module 55 shares in the quantum state
of the neural synchronization process. Module 55 then can
perform real-time analytics to validate the individual com-
ponents that make up that quantum state. In reference to
FIG. 4, GUI section 123 shows the configuration for data
analyzer as either a synchronous or asynchronous compo-
nent. GUI section 124 shows the configuration information
for the network device simulator. To provide accurate diag-
nostics, the analytics require the ability to set data patterns
and measure it against predicted results to ensure that the
process is correctly synchronizing the quantum state
between components.

Referring to FIG. 1, the graphical user interface GUI that
duplicates the brain will need to cycle the following three (3)
components:

Computer network device 57 simulator,

Motion decimation application module 51,

Sensory perception module 55 analyzer.

Referring to FIG. 6, GUI Sections 131, 132, and 133 show
output from these three (3) components, respectively. GUI
Section 133 shows the results of the self-diagnostic. Here,
module 55 is displaying the shared quantum state. From this
state, module 55 compares the replicated data record/frame
stream 58 with the original data record/frame stream 58 to
test the accuracy of its reproduction.

B. Data Entropy 63

While standards have been established and generally
accepted by the industry for network access—i.e., the physi-
cal, data link, and network layers—and most all systems and
applications provide for communication using Transmission
Control Protocol/Internet Protocol (TCP/IP)—i.e., IP run-
ning at the OSI network layer and TCP running at the OSI
transport layer, there is severe fragmentation and lack of
industry adoption and agreement with respect to a protocol
or language for interfacing with TCP/IP and the layers above
the transport layer in the OSI model—i.e., the session,
presentation, and application layers.

As a consequence of this lack of a universal protocol or
language, numerous and varying protocols and languages
have been, and continue to be, adopted and used resulting in
significant additional overhead, complexity, and a lack of
standardization and compatibility across platforms, net-
works, and systems. This diversity in protocols and lan-
guages, and lack of a universal language beyond the trans-
port layer, forces the actual data being transported to be
saddled with significant additional data to allow for trans-
lation as transmission of the data occurs through these
various layers in the communication stack. The use of these
numerous and varying protocols and languages create and,
indeed, require additional layers and additional data for
translation and control, adding additional overhead on top of
the actual data being transported and complicating system
design, deployment, operation, maintenance, and modifica-

10

15

20

25

30

35

40

45

50

55

60

26

tion. The use of these numerous and varying protocols and
languages also leads to the inefficient utilization of available
bandwidth and available processing capacity, and result in
unsatisfactory response times.

Referring to FIG. 1, the inventor of the neural synchro-
nization system 50 of the present invention recognized the
severe fragmentation and lack of industry adoption and
agreement with respect to a protocol or language for inter-
facing with TCP/IP and the layers above the transport layer
and the deficiencies caused thereby, and developed a pro-
tocol for universal data payload delivery. The architecture
and design of neural synchronization system 50 of the
present invention rests on the primary premise of a com-
monly understood principle of agnostic data description,
requiring a protocol for universal data payload delivery.
Thus, the inventor of the neurological system 50 of the
present invention developed a simple protocol to incorporate
all the other protocols, referred to as the motion signal
protocol (MSP) for encoding data entropy 63 as previously
described.

To understand the operation of data entropy 63 within a
neural synchronization process requires that system 50 be
applied to a given protocol or format from which the
differences in data communication techniques can be quan-
tified. To achieve this, neural synchronization system 50 was
applied to an Internet of Things (IoT) data protocol. Refer-
ring to FIG. 6, the last line of GUI section 132 shows a
99.52% reduction in network frames using neural synchro-
nization as opposed to current computer communication
methods. What follows is a breakdown of how neural
synchronization was able to perform this significant band-
width reduction using loT data records/frames.

C. Data Entropy Byte and Frame Reduction Formula

To project bandwidth and frame reductions using data
entropy 63 requires an understanding of the amount of data
currently being produced from an IoT system and some of
the unique record characteristics associated with that data.

Calculations are based on the following information (all
data sizes calculated in bytes):

MO=Message Overhead

MO is composed of the network message protocol. This
is the size in bytes of the light weight messaging or custom
protocol needed to send the data across the network.
RO=Record Overhead

RO is composed of all the record control header and
record structural data.

TDF=Total Data Fields

TDF is the number of data fields in the record.
AFS=Average Field Size

AFS is the average size of the data fields.
AFO=Average Field Overhead

AFO is the average size of field overhead. Each field will
contain extra bytes in one form or another to identify the
individual field.

VDF=Value Data Fields

VDF is the number of value fields. Within a record, most
of the data fields are used for identification and processing.
The real value of the record rest is one or two data fields.
Decimation concerns itself with these fields. The rest of
record is composed of either repetitive data fields or fields
with predicable data patterns.

AVS=Average Value Size

AVS is average size in bytes of the value fields.
AVO=Average Value Overhead

AVO is average size of field overhead needed to identify
the value data field.

MPS=Motion % per Sample

MPS is the one of the keys to subconscious data process-

ing. It is the percentage that a value field will change. The

US 12,242,923 B2

27

motion decimator application module 51 measures change
by its own sampling cycle since part of its function is to
divide the data stream into time segments (temporal deco-
rrelation). This number needs to correspond with the time
measurement for the formula below. For example, if the
motion decimator application module 51 is cycling every 3
seconds (20 times a minute) and the desire is to measure
bytes per minute, then the Motion % Per Sample needs to be
divided by the cycles per minute. So, if a record changes
20% per minute then its chance per change per cycle at 3
seconds is 0.2/20=0.01 or 1%. If a record changes 100% per
3 second cycle, then its overall change will be 1*¥20=20.00
or 2000% per minute.
DFS=Data Frame Size

DFS is size in bytes of the fully network packaged data
record. The software application has finished its job and the
next step is to hand the data frame to the network for
processing.
NFS=Network Frame Size (1500 bytes)

NES is the standard network frame size. In most cases, it
is 1500 bytes.
PFR=Packed Frame Ratio

PFR is the number of data records that fit into one data
frame. Decimation performs multi-record frame packaging
based upon available network space and topology.
MCF=Message Control Frames

MCF is the total number of extra frames needed to
confirm transmission. Most messaging control protocols will
send data with one frame and will receive an acknowledg-
ment with another frame. The message control frames do not
generally contain many bytes, but they are mandatory to
ensure the synchronization and confirmation of data transfer
and execution.
RNF=Required Network Frames

RNF is the total number of network frames needed to
move a data frame.

10

20

25

30

35

28
RPM=Records per Minute
RPM is the total number of records per minute produced
by a data source.
x=Number of Data Sources
Standard Data Processing

Data Frame Size(DFS)=MO+RO+(TDF*(AFS+
AFO))

Required Network Frames(RNF)=ROUNDUP(DFS/
NFS)

Standard Byte Requirements(y,)=DFSx*RPM

Standard Frame Requirements(f;)=((RNF+MCF)
x*RPM).

Data Entropy Processing

Data Frame Size(DFS)=(MO/PFR)+(RO+(VDF*
(AVS+AVO)))*MPS

Required Network Frames(RNF)=ROUNDUP(DFS/
NFS)

Decimated Byte Requirements(y,)=DFSx*RPM

Decimated Frame Requirements(f;)=((RNF+MCF)/
PFR)x*RPM).

Network Reduction
Byte Reduction Percentage=1-(3»/y,)

Frame Reduction Percentage=1-(f5/f}).

The following estimates were conducted using IoT data
frames processed by a multi-protocol router into a local
relational database and then relayed across the network to
another relational database. Calculating the data frames
between the databases was done using a standard SQL
interface, a MQTT interface, and a neural synchronization
interface. In order to standardize the results, the sampling
consist of 1000 Carbon Monoxide sensors producing loT
data frames at various intervals over the course of 1 minute.
The following results were calculated on a per minute basis:

Motion % Sampling Packed SQL MQTT Decimation

Sensor per Rate Frame (Data) (Data) (Data) SQL MQTT
Sample (Seconds) Ratio (Frames) (Frames) (Frames) Reduction Reduction
1000 2% 3 1000 4,902 KB 5469 KB 105 KB 99.786% 99.808%
40,000 FR 80,000 FR 40 FR 99.900% 99.950%

1000 2% 5 1000 2,941 KB 3,281 KB 63 KB 99.786% 99.808%
24,000 FR 48,000 FR 24 FR 99.900% 99.950%

1000 2% 10 1000 1,471 KB 1,641 KB 3.15 KB 99.786% 99.808%
12,000 FR 24,000 FR 12 FR 99.900% 99.950%

1000 2% 30 1000 490 KB 547 KB 1.05 KB 99.786% 99.808%
4,000 FR 8,000 FR 4 FR 99.900% 99.950%

1000 2% 60 1000 245 KB 273 KB 0.52 KB 99.786% 99.808%
2,000 FR 4,000 FR 2 FR 99.900% 99.950%

1000 5% 3 1000 4,902 KB 5469 KB 251 KB 99487% 99.540%
40,000 FR 80,000 FR 40 FR 99.900% 99.950%

1000 5% 5 1000 2,941 KB 3281 KB 151 KB 99487% 99.540%
24,000 FR 48,000 FR 24 FR 99.900% 99.950%

1000 5% 10 1000 1,471 KB 1,641 KB 7.54 KB 99.487% 99.540%
12,000 FR 24,000 FR 12 FR 99.900% 99.950%

1000 5% 30 1000 490 KB 547 KB 2.51 KB 99487% 99.540%
4,000 FR 8,000 FR 4 FR 99.900% 99.950%

1000 5% 60 1000 245 KB 273 KB 1.26 KB 99.487% 99.540%
2,000 FR 4,000 FR 2 FR 99.900% 99.950%

1000 10% 3 500 4,902 KB 5469 KB 503 KB 98.975% 99.081%
40,000 FR 80,000 FR 80 FR 99.800% 99.900%

1000 10% 5 500 2,941 KB 3281 KB 302 KB 98975% 99.081%
24,000 FR 48,000 FR 48 FR 99.800% 99.900%

1000 10% 10 500 1,471 KB 1,641 KB 151 KB 98.975% 99.081%
12,000 FR 24,000 FR 24 FR 99.800% 99.900%

1000 10% 30 500 490 KB 547 KB 5.03 KB 98975% 99.081%
4,000 FR 8,000 FR 8 FR 99.800% 99.900%

US 12,242,923 B2

29 30
-continued
Motion % Sampling Packed SQL MQTT Decimation

Sensor per Rate Frame (Data) (Data) (Data) SQL MQTT
Sample (Seconds) Ratio (Frames) (Frames) (Frames) Reduction Reduction
1000 10% 60 500 245 KB 273 KB 251 KB 98975% 99.081%
2,000 FR 4,000 FR 4 FR 99.800% 99.900%

1000 25% 3 200 4,902 KB 5469 KB 126 KB 97.436% 97.702%
40,000 FR 80,000 FR 200 FR 99.500% 99.750%

1000 25% 5 200 2,941 KB 3,281 KB 754 KB 97436% 97.702%
24,000 FR 48,000 FR 120 FR 99.500% 99.750%

1000 25% 10 200 1,471 KB 1,641 KB 37.7 KB 97.436% 97.702%
12,000 FR 24,000 FR 60 FR 99.500% 99.750%

1000 25% 30 200 490 KB 547 KB 12.6 KB 97.436% 97.702%
4,000 FR 8,000 FR 20 FR 99.500% 99.750%

1000 25% 60 200 245 KB 273 KB 628 KB 97.436% 97.702%
2,000 FR 4,000 FR 10 FR 99.500% 99.750%

1000 50% 3 100 4,902 KB 5469 KB 251 KB 94.873% 95.404%
40,000 FR 80,000 FR 400 FR 99.000% 99.500%

1000 50% 5 100 2,941 KB 3,281 KB 151 KB 94.873% 95.404%
24,000 FR 48,000 FR 240 FR 99.000% 99.500%

1000 50% 10 100 1,471 KB 1,641 KB 754 KB 94.873% 95.404%
12,000 FR 24,000 FR 120 FR 99.000% 99.500%

1000 50% 30 100 490 KB 547 KB 25.1 KB 94.873% 95.404%
4,000 FR 8,000 FR 40 FR 99.000% 99.500%

1000 50% 60 100 245 KB 273 KB 12.6 KB 94.873% 95.404%
2,000 FR 4,000 FR 20 FR 99.000% 99.500%

1000 100% 3 50 4,902 KB 5469 KB 503 KB 89.745% 90.807%
40,000 FR 80,000 FR 800 FR 98.000% 99.000%

1000 100% 5 50 2,941 KB 3,281 KB 302 KB 89.745% 90.807%
24,000 FR 48,000 FR 480 FR 98.000% 99.000%

1000 100% 10 50 1,471 KB 1,641 KB 151 KB 89.745% 90.807%
12,000 FR 24,000 FR 240 FR 98.000% 99.000%

1000 100% 30 50 490 KB 547 KB 50.3 KB 89.745% 90.807%
4,000 FR 8,000 FR 80 FR 98.000% 99.000%

1000 100% 60 50 245 KB 273 KB 25.1 KB 89.745% 90.807%
2,000 FR 4,000 FR 40 FR 98.000% 99.000%

D. System Operation—Functional Sequence

Referring back to FIG. 1, the end-to-end flow duplicating
neural synchronization and the processing of data entropy 63
of the present invention is described. With reference to the
diagrams of FIG. 7 and FIG. 8, the steps in the neural
synchronization process system 50 are as follows:

1. In reference to FIG. 7, the motion decimator application
module 51 executes on a specific timing interval and will
execute one data processing cycle per startup request.

2. The cycle starts with module 81 and will attempt to set
the measurement time. Safety checks are performed to
ensure that all previous cycle processing was successfully
completed. If not, the previous data cycle will be completed
and resynchronized before the next sequence is started.
Safety checks are performed on the network connection and
session state of the motion reactor application module 52
referring to FIG. 1. If everything is correct, the motion
decimator application module 51 will get the current system
time to establish a CYCLE_START time, also known as the
measurement time. Referring to FIG. 7, a data frame 94 will
be constructed that will contain a dataset and the first record
of the dataset will be a CYCLE_START Instruction.

3. Data records/frames are read one at a time by module
83. All data records/frames created up until the set measure-
ment time will be processed. Records/frames created after
the set measurement time will be processed in the next cycle.

4. For each record/frame read, module 84 will search the
object state memory 85 for a previous record/frame state.

5. If no previous state exist for a current record/frame,
then module 87 will create a SEED Instruction and will
create a new entry in the object state memory 85. The SEED
Instruction provides the necessary data to recreate the new
entry in any synchronized downstream object state memory

35

40

45

50

55

60

65

85. A SEED will include the entire original data record/
frame. The SEED will be written to the data frame 94.

6. If a previous state exists in the object state memory 85
for a current record/frame, then module 86 will measure the
motion between the current data state and the predicted data
state by comparing each individual data field. Motion is
derived by measuring data states at a fixed time interval. Any
changes in the data byte patterns will be identified as data
entropy. All other data will be classified as predictable and
discarded.

7. If data entropy is detected module 88 will create a
CHANGE Instruction and will update the corresponding
entry in the object state memory 85. The CHANGE will be
written to the data frame 94.

8. Once the supply of data records/frames has been
exhausted for a given time slice, the decimation system
application module 51 will execute module 89 to determine
dead data records/frames. Module 88 searches the object
state table to find states that were not updated during the
cycle. These are candidates for dead states. Module 89 then
measures their motion to determine if they really dead or just
not currently scheduled for production. If they are dead, then
module 92 updates the object state memory 85 and a DEAD
Instruction is written to the data frame 94.

9. Once dead processing is complete, the decimation
application system 51 will execute module 93 to create a
STOP Instruction. This concludes the linear encoding
sequence for all data input for a given cycle. Module 93 will
update object state memory 85 and a STOP Instruction is
written to the data frame 84.

10. The final step of the cycle is to initiate module 95 for
synchronous communication. If should be noted that module
95 can also be initiated prior to reaching a STOP Instruction.

US 12,242,923 B2

31

All these Instructions are Motion Signal Protocol (MSP) and
will be written into the dataset of the data frame up to either
the maximum packing size or the maximum network frame
size. If either of these conditions occur, the motion decima-
tor application module 51 will send the data frame 94 to the
motion reactor application module 52, referring to FIG. 8
and create a new data frame to hold the additional MSP.

11. In reference to FIG. 8, the motion reactor application
module 52 contains a multi-threaded communication server
module 101. Communication server module 101 maintains
network connections and will listen for network requests
from connected clients including the motion decimator
application module 51. Upon receiving a network request,
module 101 will launch an appropriate module to process
and interpret the received data frame 112.

12. For network requests originating from motion deci-
mator 51 module, motion reactor 52 will launch a Read
Decimation Request module 102 to process the data frame
112. The data frame 112 is interpreted as depicted in FIG. 5
where it is organized into a dataset containing a linear
sequence of Motion Signal Protocol (MSP) ordered first-in
first-out (FIFO).

Module 102 will unload and process each MSP instruc-
tion.

13. If a MSP CYCLE_START is encountered, Module
103 with set the relative measurement time for all MSP
instructions until the next MSP CYCLE_STOP. In order for
the motion reactor 52 to stay synchronous, all motion
interpretation and calculation must be performed at the same
time relativity as the measurement point of motion decima-
tor application module 51. Basically, the motion reactor
application module 52 runs on the time set by the motion
decimator application module 51. This time setting is trans-
mitted in the MSP CYCLE_START instruction.

14.If aMSP SEED_OBJECT is encountered. Module 104
will add a new entry to object state memory 113. The
SEED_OBIJECT carries the entire contents (all data fields)
of original data record/frame.

15. If a MSP CHANGE_OBIECT is encountered. Module
105 will update an existing entry in object state memory 113.
The CHANGE_OBIJECT carries any individual data fields
that contain unpredictable motion. Module 105 will apply
these changes in addition to any automatically generated
predictable motion data fields for that object.

16. If a MSP DEAD_OBIECT is encountered, Module
106 will mark an existing object in object state memory 113
as dead (non-responsive) which is a state indicating that an
object missed its scheduled data production.

17. If a MSP RESET_OBIJECT is encountered, Module
107 will reset one or more objects in object state memory
113. The RESET_OBIJECT carries scope information as to
the extent of the reset requested. It may apply to a single
field, a single entry, or the entire memory.

18. If a MSP STOP_CYCLE is encountered, Module 108
will initiate end of cycle processing which includes updating
predictable records/frames Module 109, replicating records/
frames Module 110, and regulating outbound data volume
Module 111.

19. Module 109 will update records/frames with predict-
able motion. Most data records/frames have no data entropy
and therefore will not generate CHANGE_OBJECTS. As a
result, these data records/frames must be identified so that
their predictable motion can be applied. Once a cycle has
concluded, a search of the object state memory 113 will
provide a list of all non-dead entries that need predictable
motion generation.

10

15

20

25

30

35

40

45

50

55

60

65

32

20. Module 110 will perform motion replication services
where the data entropy can be converted back into the
original data frame/record format.

21. Module 111 will perform data regulator services
where the data entropy can be assigned a notification level
and used to throttle the outbound dataflow.

22. When data frame 112 has been fully processed,
module 114 will provide a communication acknowledge-
ment to the motion decimator application module 51.

23. Referring to FIG. 1, on receiving a motion reactor
module 52 acknowledgement, the motion decimator module
51 will unblock and will either start construction of a new
data frame or if a CYCLE_STOP was sent and acknowl-
edged, then the motion decimator application module 51
will conclude its neural synchronization cycle.

The system, method, and computer program product of
the present invention can be implemented on any wired or
wireless communication medium including, but not limited
to, satellite, cellular, wireless or hardwired WAN, LAN, and
the like, public communication network, such as the Inter-
net, and private communication network, such as an intranet.
The design architecture of the system enables the system to
easily integrate with any hardware platform, operating sys-
tem, and most desktop and enterprise applications. The
system is platform, network, and operating system agnostic.

The system, method, and computer program product of
the present invention supports a wide range of data and
network protocols, including native support for IP, XML,
IoT, WAP, and other industry standard data and network
protocols. The two application modules of the system,
method, and computer program product of the present
invention can be implemented using any operating system
including, but not limited to Unix, Linux, VMS, IBM,
Microsoft Windows NT, 95, 98, 2000, ME, XP, Vista, 7, 8,
and 10, and the like.

Employing neural synchronization processing, the sys-
tem, method, and computer program product of the present
invention can transport and process any type of data includ-
ing ASCII Text, EBCIDIC, binary data, such as streaming
video, streaming-real-time audio, image data (e.g., x-ray
films), and unicode (i.e., for carrying different dialects of
languages—e.g., Chinese, Japanese). The system, method,
and computer program product of the present invention
provides access to and delivery of content and applications
to a full range of devices, regardless of whether the devices
connect over wireline or wireless networks. It further pro-
vides the ability to seamlessly service multiple connection
methods, wired and wireless connectivity service options,
and device types (workstations/desktops, handhelds, cell
phones, etc.) at the same time.

The systems, processes, and components set forth in the
present description may be implemented using one or more
general purpose computers, microprocessors, or the like
programmed according to the teachings of the present speci-
fication, as will be appreciated by those skilled in the
relevant art(s). Appropriate software coding can readily be
prepared by skilled programmers based on the teachings of
the present disclosure, as will be apparent to those skilled in
the relevant art(s).

The foregoing has described the principles, embodiments,
and modes of operation of the present invention. However,
the invention should not be construed as being limited to the
particular embodiments described above, as they should be
regarded as being illustrative and not as restrictive. It should
be appreciated that variations may be made in those embodi-
ments by those skilled in the art without departing from the
scope of the present invention.

US 12,242,923 B2

33

While a preferred embodiment of the present invention
has been described above, it should be understood that it has
been presented by way of example only, and not limitation.
Thus, the breadth and scope of the present invention should
not be limited by the above described exemplary embodi-
ment.

Obviously, numerous modifications and variations of the
present invention are possible in light of the above teach-
ings. It is therefore to be understood that the invention may
be practiced otherwise than as specifically described herein.

What is claimed is:

1. A system for optimizing computer data transmission,

the system comprising:
a motion decimator software module tangibly stored on a
non-transitory computer readable medium comprising
instructions which when executed by a processor cause
the processor to:
establish a synchronous network relationship with a
motion reactor software module based on a measure-
ment cycle time;

receive a plurality of data frames based on a separate
observation cycle time, where a data frame is a data
structure containing a single data field composed of
a single data type most commonly found in a net-
work data stream;

set measurement cycle time faster than observation
cycle time to establish the conditions necessary to
process synchronous observation cycle time data
frames through a separate faster synchronous mea-
surement cycle time process to create an artificial
quantum entanglement;

perform spatial and temporal decorrelation at measure-
ment cycle time of the data frames based on the
data’s observation cycle time to establish an object
state for each data frame;

store the decorrelated data frames and associated object
states in computer memory, the stored decorrelated
data frames each having a unique identifier computer
memory;

compare the object states in computer memory with
their predicted object states using the unique identi-
fier to create a plurality of data entropy objects;

translate the plurality of data entropy objects into a set
of motion signal instructions, that when executed by
the processor will synchronize all object states in
computer memory to observation time;

execute the set of motion signal instructions of the
motion decimator software module to maintain sepa-
rate computer memory that will represent an internal
quantum state in memory; and

send the set of motion signal instructions to a connected
motion reactor software module that is synchronize
according to the measurement cycle time;
a motion reactor software module tangibly stored on a
non-transitory computer readable medium comprising
instructions which when executed by a processor cause
the processor to:
receive the set of motion signal instructions of the
motion decimator software module;

synchronously execute the set of motion signal instruc-
tions of the motion decimator software module to
maintain separate computer memory that will repre-
sent an internal quantum state in memory;

trigger a motion replication module to regenerate either
the original or an alternate form of the data frames
based on their observation cycle time;

25

30

40

45

55

60

34

trigger a motion regulator module to filter and control
the volume of outbound data entropy; and

transmit prediction data and execution status of the set
of motion signal instructions to the motion decimator
software module.
2. The system of claim 1, wherein the plurality of data
frames are packetized into a single network data frame.
3. The system of claim 1, further comprising a security
module tangibly stored on a non-transitory computer read-
able medium comprising instructions which when executed
by the processor cause the processor to prevent decryption
of the plurality of data frames using a data entropy encoding
to limit time, limit frames, limit repetitive data, and limit
access.
4. The system of claim 3, wherein the security module
comprises ghost data security and false flag security, where
ghost data security inserts fictious data at various points in
the network data stream whose points represent a combina-
tion key, where false flag security hides the correct network
data stream inside elements of a false network data stream.
5. A method for optimizing computer data transmission,
the method comprising:
a motion decimator software module tangibly stored on a
non-transitory computer readable medium comprising
instructions which when executed by a processor cause
the processor to:
establish a synchronous network relationship with a
motion reactor software module based on a measure-
ment cycle time;

receive a plurality of data frames based on a separate
observation cycle time, where a data frame is a data
structure containing a single data field composed of
a single data type most commonly found in a net-
work data stream;

set measurement cycle time faster than observation
cycle time to establish the conditions necessary to
process synchronous observation cycle time data
frames through a separate faster synchronous mea-
surement cycle time process to create an artificial
quantum entanglement:

perform spatial and temporal decorrelation at measure-
ment cycle time of the data frames based on the
data’s observation cycle time to establish an object
state for each data frame;

store the decorrelated data frames and associated object
states in computer memory, the stored decorrelated
data frames each having a unique identifier in com-
puter memory,

compare the object states in computer memory with
their predicted object states using the unique identi-
fier to create a plurality of data entropy objects;

translate the plurality of data entropy objects into a set
of motion signal instructions, that when executed by
the processor will synchronize all object states in
computer memory to observation time:

execute the set of motion signal instructions of the
motion decimator software module to maintain sepa-
rate computer memory that will represent an internal
quantum state in memory; and

send the set of motion signal instructions to a connected
motion reactor software module that is synchronize
according to the measurement cycle time;

a motion reactor software module tangibly stored on a
non-transitory computer readable medium comprising
instructions which when executed by a processor cause
the processor to:

US 12,242,923 B2

35

receive the set of motion signal instructions of the
motion decimator software module;

synchronously execute the set of motion signal instruc-
tions of the motion decimator software module to
maintain separate computer memory that will repre-
sent an internal quantum state in memory;

trigger a motion replication module to regenerate either
the original or an alternate form of the data frames
based on their observation cycle time;

trigger a motion regulator module to filter and control
the volume of outbound data entropy; and

transmit prediction data and execution status of the set
of motion signal instructions to the motion decimator
software module.
6. The method of claim 5, wherein the plurality of data
frames are packetized into a single network data frame.
7. The method of claim 5, further comprising a security
module tangibly stored on a non-transitory computer read-
able medium comprising instructions which when executed
by the processor cause the processor to prevent decryption
of' the plurality of data frames using a data entropy encoding
to limit time, limit frames, limit repetitive data, and limit
access.
8. The method of claim 7, wherein the security module
comprises ghost data security and false flag security, where
ghost data security inserts fictious data at various points in
the network data stream whose points represent a combina-
tion key, where false flag security hides the correct network
data stream inside elements of a false network data stream.
9. A system for optimizing computer data transmission,
the system comprising:
a motion decimator software module tangibly stored on a
non-transitory computer readable medium comprising
instructions which when executed by a processor cause
the processor to:
establish a synchronous network relationship with a
motion reactor software module based on a measure-
ment cycle time;

receive a plurality of data records based on a separate
observation cycle time, where a data record is a data
structure containing multiple data fields composed of
different data types most commonly found in a
relational database server;

set measurement cycle time faster than observation
cycle time to establish the conditions necessary to
process synchronous observation cycle time data
records through a separate faster synchronous mea-
surement cycle time process to create an artificial
quantum entanglement;

perform spatial and temporal decorrelation at measure-
ment cycle time of the data records based on the
data’s observation cycle time to establish an object
state for each data record;

store the decorrelated data records and associated
object states in computer memory, the stored deco-
rrelated data records each having a unique identifier
in computer memory;

compare the object states in computer memory with
their predicted object states using the unique identi-
fier to create a plurality of data entropy objects;

translate the plurality of data entropy objects into a set
of motion signal instructions, that when executed by
the processor will synchronize all object states in
computer memory to observation time;

execute the set of motion signal instructions of the
motion decimator software module to maintain sepa-

10

15

20

25

30

35

40

45

50

55

60

36

rate computer memory that will represent an internal
quantum state in memory; and

send the set of motion signal instructions to a connected
motion reactor software module that is synchronize
according to the measurement cycle time;
a motion reactor software module tangibly stored on a
non-transitory computer readable medium comprising
instructions which when executed by a processor cause
the processor to:
receive the set of motion signal instructions of the
motion decimator software module;

synchronously execute the set of motion signal instruc-
tions of the motion decimator software module to
maintain separate computer memory that will repre-
sent an internal quantum state in memory;

trigger a motion replication module to regenerate either
the original or an alternate form of the data records
based on their observation cycle time;

trigger a motion regulator module to filter and control
the volume of outbound data entropy; and

transmit prediction data and execution status of the set
of motion signal instructions to the motion decimator
software module.
10. The system of claim 9, wherein the plurality of data
records are packetized into a single network data frame.
11. The system of claim 9, further comprising a security
module tangibly stored on a non-transitory computer read-
able medium comprising instructions which when executed
by the processor cause the processor to prevent decryption
of' the plurality of data records using a data entropy encoding
to limit time, limit frames, limit repetitive data, and limit
access.
12. The system of claim 11, wherein the security module
comprises ghost data security and false flag security, where
ghost data security inserts fictious data at various points in
the network data stream whose points represent a combina-
tion key, where false flag security hides the correct network
data stream inside elements of a false network data stream.
13. A method for optimizing computer data transmission,
the method comprising:
a motion decimator software module tangibly stored on a
non-transitory computer readable medium comprising
instructions which when executed by a processor cause
the processor to:
establish a synchronous network relationship with a
motion reactor software module based on a measure-
ment cycle time:

receive a plurality of data records based on a separate
observation cycle time, where a data record is a data
structure containing multiple data fields composed of
different data types most commonly found in a
relational database server;

set measurement cycle time faster than observation
cycle time to establish the conditions necessary to
process synchronous observation cycle time data
records through a separate faster synchronous mea-
surement cycle time process to create an artificial
quantum entanglement;

perform spatial and temporal decorrelation at measure-
ment cycle time of the data records based on the
data’s observation cycle time to establish an object
state for each data record;

store the decorrelated data records and associated
object states in computer memory, the stored deco-
rrelated data records each having a unique identifier
in computer memory;

US 12,242,923 B2

37

compare the object states in computer memory with
their predicted object states using the unique identi-
fier to create a plurality of data entropy objects;

translate the plurality of data entropy objects into a set
of motion signal instructions, that when executed by
the processor will synchronize all object states in
computer memory to observation time;

execute the set of motion signal instructions of the
motion decimator software module to maintain sepa-
rate computer memory that will represent an internal
quantum state in memory; and

send the set of motion signal instructions to a connected
motion reactor software module that is synchronize
according to the measurement cycle time;
a motion reactor software module tangibly stored on a
non-transitory computer readable medium comprising
instructions which when executed by a processor cause
the processor to:
receive the set of motion signal instructions of the
motion decimator software module;

synchronously execute the set of motion signal instruc-
tions of the motion decimator software module to
maintain separate computer memory that will repre-
sent an internal quantum state in memory;

10

15

20

38

trigger a motion replication module to regenerate either
the original or an alternate form of the data records
based on their observation cycle time;

trigger a motion regulator module to filter and control
the volume of outbound data entropy; and

transmit prediction data and execution status of the set
of motion signal instructions to the motion decimator
software module.

14. The method of claim 13, wherein the plurality of data
records are packetized into a single network data frame.

15. The method of claim 13, further comprising a security
module tangibly stored on a non-transitory computer read-
able medium comprising instructions which when executed
by the processor cause the processor to prevent decryption
of' the plurality of data records using a data entropy encoding
to limit time, limit frames, limit repetitive data, and limit
access.

16. The method of claim 15, wherein the security module
comprises ghost data security and false flag security, where
ghost data security inserts fictious data at various points in
the network data stream whose points represent a combina-
tion key, where false flag security hides the correct network
data stream inside elements of a false network data stream.

#* #* #* #* #*

	Front Page
	Drawings
	Specification
	Claims

